Rainfall partitioning characteristics by two sand-binding shrubs and their impact on shallow soil moisture replenishment in the Northwestern desert steppe of China
Xiaoying Chen, Lin Chen, Xinguo Yang, Minlan Li, Dian Yu, Naiping Song
{"title":"Rainfall partitioning characteristics by two sand-binding shrubs and their impact on shallow soil moisture replenishment in the Northwestern desert steppe of China","authors":"Xiaoying Chen, Lin Chen, Xinguo Yang, Minlan Li, Dian Yu, Naiping Song","doi":"10.1002/eco.2652","DOIUrl":null,"url":null,"abstract":"<p>Rainfall partitioning by the vegetation canopy into stemflow (SF) and throughfall (TF) plays a crucial role in soil infiltration and the local water balance. This study aims to quantify the differences in SF and TF between two sand-binding shrubs, <i>Caragana liouana</i> and <i>Salix psammophila</i>, in the desert steppe, clarify the effects of biotic and abiotic factors on them using the boosted regression trees (BRT) model, and compare soil moisture replenishment during the growing seasons of 2021 and 2022. Under identical rainfall conditions, the canopies of <i>C. liouana</i> and <i>S. psammophila</i> can lead to differences in rainfall partitioning. The SF percentage ranged from 0 to 23.70% for <i>C. liouana</i> and from 0% to 3.3% for <i>S. psammophila</i>, respectively, while the TF percentage ranged from 42.12% to 90.07% for <i>C. liouana</i> and from 52.39% to 94.87% for <i>S. psammophila</i>. The funnelling ratio for <i>C. liouana</i> (69.59) is 1.19 times higher than for <i>S. psammophila</i> (58.36). Rainfall amount is the primary variable affecting rainfall partitioning. The average soil moisture replenishment and soil moisture conversion efficiency under the <i>C. liouana</i> canopy are 11.02 mm and 58.39%, respectively, which are significantly higher than those for <i>S. psammophila</i> (4.84 mm and 24.33%, respectively). These findings suggest that <i>C. liouana</i>, with its relatively higher SF and soil moisture conversion capability compared to <i>S. psammophila</i>, plays a significant ecohydrological role in water-limited ecosystems. This study provides a reference for species selection and ecological management in vegetation restoration efforts in desert steppes and similar regions.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"17 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2652","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rainfall partitioning by the vegetation canopy into stemflow (SF) and throughfall (TF) plays a crucial role in soil infiltration and the local water balance. This study aims to quantify the differences in SF and TF between two sand-binding shrubs, Caragana liouana and Salix psammophila, in the desert steppe, clarify the effects of biotic and abiotic factors on them using the boosted regression trees (BRT) model, and compare soil moisture replenishment during the growing seasons of 2021 and 2022. Under identical rainfall conditions, the canopies of C. liouana and S. psammophila can lead to differences in rainfall partitioning. The SF percentage ranged from 0 to 23.70% for C. liouana and from 0% to 3.3% for S. psammophila, respectively, while the TF percentage ranged from 42.12% to 90.07% for C. liouana and from 52.39% to 94.87% for S. psammophila. The funnelling ratio for C. liouana (69.59) is 1.19 times higher than for S. psammophila (58.36). Rainfall amount is the primary variable affecting rainfall partitioning. The average soil moisture replenishment and soil moisture conversion efficiency under the C. liouana canopy are 11.02 mm and 58.39%, respectively, which are significantly higher than those for S. psammophila (4.84 mm and 24.33%, respectively). These findings suggest that C. liouana, with its relatively higher SF and soil moisture conversion capability compared to S. psammophila, plays a significant ecohydrological role in water-limited ecosystems. This study provides a reference for species selection and ecological management in vegetation restoration efforts in desert steppes and similar regions.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.