Dr. Masahiro Ikeshita, Ayumu Kuroda, Seika Suzuki, Prof. Dr. Yoshitane Imai, Prof. Dr. Takashi Tsuno
{"title":"Switching of Circularly Polarized Luminescence via Dynamic Axial Chirality Control of Chiral Bis(Boron Difluoride) Complexes with Salen Ligands","authors":"Dr. Masahiro Ikeshita, Ayumu Kuroda, Seika Suzuki, Prof. Dr. Yoshitane Imai, Prof. Dr. Takashi Tsuno","doi":"10.1002/cptc.202400110","DOIUrl":null,"url":null,"abstract":"<p>The intensity and handedness of circularly polarized luminescence (CPL) were successfully controlled by dynamic molecular motion in solutions. Bis(boron difluoride) complexes with chiral salen ligands were synthesized and their photophysical properties were investigated. Although these complexes showed rapid molecular rotation about the C−N bond axis in solution at room temperature, two conformers assigned as atropisomers were observed in the NMR spectra at low temperature. Furthermore, the equilibrium of these atropisomers was found to change depending on the external environment, such as the solvent and temperature, allowing precise control of the intensity and handedness of CPL without luminescence color shifts. Theoretical calculations based on density functional theory (DFT) revealed that intramolecular chiral exciton coupling is the key to changes in CPL properties.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400110","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intensity and handedness of circularly polarized luminescence (CPL) were successfully controlled by dynamic molecular motion in solutions. Bis(boron difluoride) complexes with chiral salen ligands were synthesized and their photophysical properties were investigated. Although these complexes showed rapid molecular rotation about the C−N bond axis in solution at room temperature, two conformers assigned as atropisomers were observed in the NMR spectra at low temperature. Furthermore, the equilibrium of these atropisomers was found to change depending on the external environment, such as the solvent and temperature, allowing precise control of the intensity and handedness of CPL without luminescence color shifts. Theoretical calculations based on density functional theory (DFT) revealed that intramolecular chiral exciton coupling is the key to changes in CPL properties.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.