Analysis of Dynamic Changes in Vegetation Net Primary Productivity and Its Driving Factors in the Two Regions North and South of the Hu Huanyong Line in China
Weimin Liu, Dengming Yan, Zhilei Yu, Zening Wu, Huiliang Wang, Jie Yang, Simin Liu, Tianye Wang
{"title":"Analysis of Dynamic Changes in Vegetation Net Primary Productivity and Its Driving Factors in the Two Regions North and South of the Hu Huanyong Line in China","authors":"Weimin Liu, Dengming Yan, Zhilei Yu, Zening Wu, Huiliang Wang, Jie Yang, Simin Liu, Tianye Wang","doi":"10.3390/land13060722","DOIUrl":null,"url":null,"abstract":"Human activities and global environmental changes have transformed terrestrial ecosystems, notably increasing vegetation greenness in China. However, this greening is less effective across the Hu Huanyong Line (Hu Line). This study analyzes dynamic changes and driving factors of nine vegetation net primary productivities (NPPs) in regions divided by the Hu Line using remote sensing data, trend analysis, and the Geodetector model. Findings reveal that from 2001 to 2022, 38.22% of regional vegetation NPP in China increased, especially in the Loess Plateau, Sichuan Basin, and Northeast Plains, while 2.39% decreased, primarily in the southeastern region and southern Tibet. Grasslands contributed 39.71% to NPP north of the Hu Line, and cultivated vegetation contributed 50.58% south. The driving explanatory power of factors on vegetation NPP on the north side of the Hu Line is generally greater than that on the south side. Natural factors primarily drive NPP changes, with human activities having less impact. Combined factors, particularly climate and elevation, significantly enhance the driving explanatory power (q, 0–1). The joint effects of elevation and precipitation on grassland NPP dynamics (q = 0.602) are notable. GDP’s influence on broadleaf forests north of the Hu Line (q = 0.404) is significant. Grasslands respond strongly to land use changes and population density, with a combined effect of q = 0.535. Shrubs, alpine vegetation, and meadows show minimal response to individual factors (q < 0.2). These findings offer insights for devising ecological protection measures tailored to local conditions.","PeriodicalId":37702,"journal":{"name":"Land","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/land13060722","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Human activities and global environmental changes have transformed terrestrial ecosystems, notably increasing vegetation greenness in China. However, this greening is less effective across the Hu Huanyong Line (Hu Line). This study analyzes dynamic changes and driving factors of nine vegetation net primary productivities (NPPs) in regions divided by the Hu Line using remote sensing data, trend analysis, and the Geodetector model. Findings reveal that from 2001 to 2022, 38.22% of regional vegetation NPP in China increased, especially in the Loess Plateau, Sichuan Basin, and Northeast Plains, while 2.39% decreased, primarily in the southeastern region and southern Tibet. Grasslands contributed 39.71% to NPP north of the Hu Line, and cultivated vegetation contributed 50.58% south. The driving explanatory power of factors on vegetation NPP on the north side of the Hu Line is generally greater than that on the south side. Natural factors primarily drive NPP changes, with human activities having less impact. Combined factors, particularly climate and elevation, significantly enhance the driving explanatory power (q, 0–1). The joint effects of elevation and precipitation on grassland NPP dynamics (q = 0.602) are notable. GDP’s influence on broadleaf forests north of the Hu Line (q = 0.404) is significant. Grasslands respond strongly to land use changes and population density, with a combined effect of q = 0.535. Shrubs, alpine vegetation, and meadows show minimal response to individual factors (q < 0.2). These findings offer insights for devising ecological protection measures tailored to local conditions.
LandENVIRONMENTAL STUDIES-Nature and Landscape Conservation
CiteScore
4.90
自引率
23.10%
发文量
1927
期刊介绍:
Land is an international and cross-disciplinary, peer-reviewed, open access journal of land system science, landscape, soil–sediment–water systems, urban study, land–climate interactions, water–energy–land–food (WELF) nexus, biodiversity research and health nexus, land modelling and data processing, ecosystem services, and multifunctionality and sustainability etc., published monthly online by MDPI. The International Association for Landscape Ecology (IALE), European Land-use Institute (ELI), and Landscape Institute (LI) are affiliated with Land, and their members receive a discount on the article processing charge.