{"title":"Digital fatigue cracking test and fatigue life assessment of rib-deck joints in orthotropic steel decks","authors":"Junming Wang, Tianqi Zhao, Xiao Hu, Hongye Gou","doi":"10.1177/13694332241256985","DOIUrl":null,"url":null,"abstract":"The orthotropic steel decks (OSDs) are vulnerable to fatigue fractures, which will inevitably impair the normal service of the steel bridge panels. To determine the impact of the initial cracks on the fatigue life, this study constructed an evaluation model of the OSD rib-to-deck joints crack based on the fracture mechanics principle. And combined it with the multi-scale finite element analysis model, the digital fatigue test model of the whole bridge was established. Research shows: A typical I-II-III composite crack with the supremacy of type I crack can be seen in the OSD rib-to-deck joints. Fatigue cracks developed at the deck weld toe dominate the fatigue failure mode. Further research revealed that as the depth of cracks increased, the stress on the cross-section was redistributed. The intensity factor then displayed a trend of growing and then gradually flattening or even dropping. Based on the relationship between cracks of different depths and the remaining life of the OSDs, recommendations are given for bridge maintenance. The multi-scale digital fatigue test can provide analysis and simulation methods for the fatigue crack propagation in the steel bridge deck of the bridge in operation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241256985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The orthotropic steel decks (OSDs) are vulnerable to fatigue fractures, which will inevitably impair the normal service of the steel bridge panels. To determine the impact of the initial cracks on the fatigue life, this study constructed an evaluation model of the OSD rib-to-deck joints crack based on the fracture mechanics principle. And combined it with the multi-scale finite element analysis model, the digital fatigue test model of the whole bridge was established. Research shows: A typical I-II-III composite crack with the supremacy of type I crack can be seen in the OSD rib-to-deck joints. Fatigue cracks developed at the deck weld toe dominate the fatigue failure mode. Further research revealed that as the depth of cracks increased, the stress on the cross-section was redistributed. The intensity factor then displayed a trend of growing and then gradually flattening or even dropping. Based on the relationship between cracks of different depths and the remaining life of the OSDs, recommendations are given for bridge maintenance. The multi-scale digital fatigue test can provide analysis and simulation methods for the fatigue crack propagation in the steel bridge deck of the bridge in operation.