Enhanced energy recovery in municipal wastewater treatment plants through co-digestion by anaerobic membrane bioreactors: current status and future perspectives
Ali Izzet Cengiz, Huseyin Guven, Hale Ozgun, Mustafa Evren Ersahin
{"title":"Enhanced energy recovery in municipal wastewater treatment plants through co-digestion by anaerobic membrane bioreactors: current status and future perspectives","authors":"Ali Izzet Cengiz, Huseyin Guven, Hale Ozgun, Mustafa Evren Ersahin","doi":"10.1007/s11157-024-09691-6","DOIUrl":null,"url":null,"abstract":"<div><p>Today, the transition to renewable energy from conventional energy practices is more important than ever to establish energy security and mitigate climate change. The wastewater treatment plants (WWTP) consume a remarkable amount of energy and cause significant greenhouse gas emissions. The energy balance of WWTP can be improved by implementing energy-efficient applications such as anaerobic digestion. However, most of the existing WWTPs utilize only sewage sludge in conventional anaerobic digesters (CAD) which results in low biogas generation. Generally, co-digestion is indicated as an effective solution for the low biogas generation faced in mono-digestion. Moreover, recently, anaerobic membrane bioreactors (AnMBR) have been promoted as a prominent alternative to CADs. This paper overviews the current situation of co-digestion applications by AnMBRs for municipal WWTPs. Furthermore, the environmental and economic aspects of these applications were reviewed. Lastly, challenges and future perspectives related to the co-digestion applications by AnMBR were thoroughly discussed.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":754,"journal":{"name":"Reviews in Environmental Science and Bio/Technology","volume":"23 2","pages":"385 - 410"},"PeriodicalIF":8.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11157-024-09691-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Environmental Science and Bio/Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11157-024-09691-6","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Today, the transition to renewable energy from conventional energy practices is more important than ever to establish energy security and mitigate climate change. The wastewater treatment plants (WWTP) consume a remarkable amount of energy and cause significant greenhouse gas emissions. The energy balance of WWTP can be improved by implementing energy-efficient applications such as anaerobic digestion. However, most of the existing WWTPs utilize only sewage sludge in conventional anaerobic digesters (CAD) which results in low biogas generation. Generally, co-digestion is indicated as an effective solution for the low biogas generation faced in mono-digestion. Moreover, recently, anaerobic membrane bioreactors (AnMBR) have been promoted as a prominent alternative to CADs. This paper overviews the current situation of co-digestion applications by AnMBRs for municipal WWTPs. Furthermore, the environmental and economic aspects of these applications were reviewed. Lastly, challenges and future perspectives related to the co-digestion applications by AnMBR were thoroughly discussed.
期刊介绍:
Reviews in Environmental Science and Bio/Technology is a publication that offers easily comprehensible, reliable, and well-rounded perspectives and evaluations in the realm of environmental science and (bio)technology. It disseminates the most recent progressions and timely compilations of groundbreaking scientific discoveries, technological advancements, practical applications, policy developments, and societal concerns encompassing all facets of environmental science and (bio)technology. Furthermore, it tackles broader aspects beyond the natural sciences, incorporating subjects such as education, funding, policy-making, intellectual property, and societal influence.