INVESTIGATION OF THE POSSIBILITY OF MEASURING GLYCATED HEMOGLOBIN BY SCANNING FLOW CYTOMETRY

A. Gisich, E. Yastrebova
{"title":"INVESTIGATION OF THE POSSIBILITY OF MEASURING GLYCATED HEMOGLOBIN BY SCANNING FLOW CYTOMETRY","authors":"A. Gisich, E. Yastrebova","doi":"10.29039/rusjbpc.2023.0612","DOIUrl":null,"url":null,"abstract":"The article explores the possibility of measuring glycated hemoglobin in single erythrocytes using scanning flow cytometry. Calculations of the intensity of scattered radiation from an erythrocyte in a wide angular range (light scattering indicatrix) were carried out for wavelengths at the maximum of the absorption band of glycated hemoglobin. The maximum sensitivity for the concentration of glycated hemoglobin was set at a wavelength of 415 nm. As a result, it is possible to reliably separate the concentrations of glycated hemoglobin in donors and patients with diagnosed diabetes with a difference in HbA1c concentrations of more than 5% on the existing practical implementation of a scanning flow cytometer, which includes lasers: 405 nm (30 mW, Radius, Coherent Inc., Santa Clara, USA) and 660 nm (LM–660–20–S, 40 mW). A theoretical calculation for a wavelength of 415 nm showed that a noticeable difference in the value of the scattering intensity (more than 10%) is observed only in the case of a difference in the concentrations of glycated hemoglobin of at least 3%. Thus, if a laser with a wavelength of 415 nm is installed on the existing practical implementation of the device, then the determination of glycated hemoglobin will become possible with an accuracy of no more than 3%.","PeriodicalId":169374,"journal":{"name":"Russian Journal of Biological Physics and Chemisrty","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Biological Physics and Chemisrty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29039/rusjbpc.2023.0612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article explores the possibility of measuring glycated hemoglobin in single erythrocytes using scanning flow cytometry. Calculations of the intensity of scattered radiation from an erythrocyte in a wide angular range (light scattering indicatrix) were carried out for wavelengths at the maximum of the absorption band of glycated hemoglobin. The maximum sensitivity for the concentration of glycated hemoglobin was set at a wavelength of 415 nm. As a result, it is possible to reliably separate the concentrations of glycated hemoglobin in donors and patients with diagnosed diabetes with a difference in HbA1c concentrations of more than 5% on the existing practical implementation of a scanning flow cytometer, which includes lasers: 405 nm (30 mW, Radius, Coherent Inc., Santa Clara, USA) and 660 nm (LM–660–20–S, 40 mW). A theoretical calculation for a wavelength of 415 nm showed that a noticeable difference in the value of the scattering intensity (more than 10%) is observed only in the case of a difference in the concentrations of glycated hemoglobin of at least 3%. Thus, if a laser with a wavelength of 415 nm is installed on the existing practical implementation of the device, then the determination of glycated hemoglobin will become possible with an accuracy of no more than 3%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究通过扫描流式细胞仪测量糖化血红蛋白的可能性
文章探讨了利用扫描流式细胞仪测量单个红细胞中糖化血红蛋白的可能性。针对糖化血红蛋白吸收带最大值的波长,对红细胞在宽角度范围内的散射辐射强度(光散射指示矩阵)进行了计算。糖化血红蛋白浓度的最大灵敏度设定为 415 纳米波长。因此,在现有的扫描流式细胞仪(包括激光器)上,可以可靠地分离 HbA1c 浓度相差 5%以上的供体和已确诊糖尿病患者的糖化血红蛋白浓度:405 nm(30 mW,Radius,相干公司,美国圣克拉拉)和 660 nm(LM-660-20-S,40 mW)。波长为 415 纳米的理论计算显示,只有在糖化血红蛋白浓度相差至少 3% 的情况下,才能观察到散射强度值的明显差异(超过 10%)。因此,如果在现有的实际设备上安装波长为 415 nm 的激光器,那么糖化血红蛋白的测定精度将不会超过 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STATISTICAL EVALUATION FOR BACTERIA ELECTRO-STIMULATION USING THE DUNNETT METHOD FOR A MICROBIAL FUEL CELL CRITICAL AND LETHAL OXYGEN CONCENTRATIONS FOR SOME BLACK SEA FISH (SHORT REVIEW) WEB-SERVICES FOR MICRORNA TARGET PREDICTION USING NEURAL NETWORKS RECONSTRUCTION OF GENE AND ASSOCIATIVE NETWORKS OF DISEASES TO SEARCH FOR TARGET GENES GENERALIZATION OF THE THERMOKINETIC OREGONATOR MODEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1