An integrated material-structural analysis of prestress concrete affected by corrosion of non-prestressed reinforcement

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-20 DOI:10.1177/13694332241255742
Xiaojie Sun, Fuyuan Gong, Yuxi Zhao, Bin Zeng, Koichi Maekawa
{"title":"An integrated material-structural analysis of prestress concrete affected by corrosion of non-prestressed reinforcement","authors":"Xiaojie Sun, Fuyuan Gong, Yuxi Zhao, Bin Zeng, Koichi Maekawa","doi":"10.1177/13694332241255742","DOIUrl":null,"url":null,"abstract":"Corrosion-induced concrete cracking is a significant stage of structural deterioration in prestressed concrete (PC) structures. Most current research predominantly focuses on the corrosion of prestressed steel strands, while paying limited attention to the study of non-prestressed reinforcement corrosion. In this study, an integrated material-structural numerical approach was developed to simulate corroded PC beams, considering corrosion products migration in pores and cracks. The cracking patterns and prestress losses obtained from the simulation results agreed well with experimental observations. Subsequently, using the proposed numerical approach, the interaction mechanism of the prestress level and reinforcement corrosion was investigated. The simulation results indicated that corrosion of longitudinal reinforcement leads to cross-sectional damage, causing the redistribution of stress across the section and increasing long-term deformation, ultimately resulting in prestress losses. Meanwhile, stirrup corrosion leads to an initial increase in prestress due to expansion forces when the degree of corrosion is not so high, but finally it will also lead to a degradation of mechanical performance.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241255742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Corrosion-induced concrete cracking is a significant stage of structural deterioration in prestressed concrete (PC) structures. Most current research predominantly focuses on the corrosion of prestressed steel strands, while paying limited attention to the study of non-prestressed reinforcement corrosion. In this study, an integrated material-structural numerical approach was developed to simulate corroded PC beams, considering corrosion products migration in pores and cracks. The cracking patterns and prestress losses obtained from the simulation results agreed well with experimental observations. Subsequently, using the proposed numerical approach, the interaction mechanism of the prestress level and reinforcement corrosion was investigated. The simulation results indicated that corrosion of longitudinal reinforcement leads to cross-sectional damage, causing the redistribution of stress across the section and increasing long-term deformation, ultimately resulting in prestress losses. Meanwhile, stirrup corrosion leads to an initial increase in prestress due to expansion forces when the degree of corrosion is not so high, but finally it will also lead to a degradation of mechanical performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受非预应力钢筋腐蚀影响的预应力混凝土材料结构综合分析
腐蚀引起的混凝土开裂是预应力混凝土(PC)结构退化的一个重要阶段。目前大多数研究主要关注预应力钢绞线的腐蚀,而对非预应力钢筋腐蚀的研究关注有限。在本研究中,考虑到腐蚀产物在孔隙和裂缝中的迁移,开发了一种材料-结构综合数值方法来模拟受腐蚀的 PC 梁。模拟结果得出的开裂模式和预应力损失与实验观测结果吻合。随后,利用所提出的数值方法,研究了预应力水平与钢筋腐蚀的相互作用机理。模拟结果表明,纵向钢筋锈蚀会导致横截面破坏,造成横截面应力重新分布,增加长期变形,最终导致预应力损失。同时,箍筋锈蚀在锈蚀程度不高时,由于膨胀力的作用,会导致初始预应力增加,但最终也会导致机械性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1