Experiments on Low–Cycle Ductile Damage and Failure Under Biaxial Loading Conditions

IF 2 3区 工程技术 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Experimental Mechanics Pub Date : 2024-05-20 DOI:10.1007/s11340-024-01074-w
S. Gerke, Z. Wei, M. Brünig
{"title":"Experiments on Low–Cycle Ductile Damage and Failure Under Biaxial Loading Conditions","authors":"S. Gerke,&nbsp;Z. Wei,&nbsp;M. Brünig","doi":"10.1007/s11340-024-01074-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The damage and failure behavior of ductile metals depends on the stress state as well as on the loading history. Biaxial experiments with suitable specimens can be used to targeted generate different loading conditions, thus allowing the investigation of a wide variety of load cycles with different stress states.</p><h3>Objective</h3><p>In the biaxial experiments with the newly presented HC-specimen cyclic shear loads are superimposed by various constant compressive and tensile loads. Buckling during compressive loading in both axes is avoided by an additional newly introduced downholder.</p><h3>Methods</h3><p>The strain fields at the surfaces of the biaxial specimens are evaluated by digital image correlation (DIC), and after failure the corresponding fracture surfaces are analyzed by scanning electron microscopy (SEM). Associated numerical simulations employing the presented material model provide information on the current stress states.</p><h3>Results</h3><p>The introduced downholder successfully prevents buckling during compressive loading. The strain fields detect a clear influence of the shear direction and a tensile superposition of the cyclic shear load leads to more brittle and a compressive superposition to more ductile behavior. The accompanying numerical calculations reveal the associated, different stress states.</p><h3>Conclusions</h3><p>The new experimental program with biaxially loaded specimens for the investigation of damage and failure behavior under cyclic loading enables the targeted examination of a wide variety of load cycles and is thus suitable for the comprehensive analysis of these phenomena.</p></div>","PeriodicalId":552,"journal":{"name":"Experimental Mechanics","volume":"64 7","pages":"1021 - 1036"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11340-024-01074-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11340-024-01074-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The damage and failure behavior of ductile metals depends on the stress state as well as on the loading history. Biaxial experiments with suitable specimens can be used to targeted generate different loading conditions, thus allowing the investigation of a wide variety of load cycles with different stress states.

Objective

In the biaxial experiments with the newly presented HC-specimen cyclic shear loads are superimposed by various constant compressive and tensile loads. Buckling during compressive loading in both axes is avoided by an additional newly introduced downholder.

Methods

The strain fields at the surfaces of the biaxial specimens are evaluated by digital image correlation (DIC), and after failure the corresponding fracture surfaces are analyzed by scanning electron microscopy (SEM). Associated numerical simulations employing the presented material model provide information on the current stress states.

Results

The introduced downholder successfully prevents buckling during compressive loading. The strain fields detect a clear influence of the shear direction and a tensile superposition of the cyclic shear load leads to more brittle and a compressive superposition to more ductile behavior. The accompanying numerical calculations reveal the associated, different stress states.

Conclusions

The new experimental program with biaxially loaded specimens for the investigation of damage and failure behavior under cyclic loading enables the targeted examination of a wide variety of load cycles and is thus suitable for the comprehensive analysis of these phenomena.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双轴加载条件下的低循环韧性损伤和破坏实验
背景韧性金属的破坏和失效行为取决于应力状态和加载历史。使用合适的试样进行双轴实验可以有针对性地生成不同的加载条件,从而可以研究具有不同应力状态的各种加载循环。方法通过数字图像相关技术(DIC)评估双轴试样表面的应变场,并通过扫描电子显微镜(SEM)分析失效后的相应断裂面。采用所介绍的材料模型进行的相关数值模拟提供了有关当前应力状态的信息。应变场检测到剪切方向的明显影响,循环剪切载荷的拉伸叠加导致脆性增加,而压缩叠加导致韧性增加。伴随的数值计算揭示了相关的不同应力状态。结论使用双轴加载试样研究循环加载下的破坏和失效行为的新实验程序能够有针对性地检查各种加载循环,因此适合对这些现象进行全面分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Mechanics
Experimental Mechanics 物理-材料科学:表征与测试
CiteScore
4.40
自引率
16.70%
发文量
111
审稿时长
3 months
期刊介绍: Experimental Mechanics is the official journal of the Society for Experimental Mechanics that publishes papers in all areas of experimentation including its theoretical and computational analysis. The journal covers research in design and implementation of novel or improved experiments to characterize materials, structures and systems. Articles extending the frontiers of experimental mechanics at large and small scales are particularly welcome. Coverage extends from research in solid and fluids mechanics to fields at the intersection of disciplines including physics, chemistry and biology. Development of new devices and technologies for metrology applications in a wide range of industrial sectors (e.g., manufacturing, high-performance materials, aerospace, information technology, medicine, energy and environmental technologies) is also covered.
期刊最新文献
On the Cover: A Novel Method to In-Situ Characterize Fatigue Crack Growth Behavior of Nickel Based Superalloys by Laser Thermography Editorial: Message from the Incoming Editor-in-Chief Characterization of Environmental Stress Cracking in Polymers Through a Modified Bent Strip Test Method Evolving Properties of Biological Materials Captured via Needle-Based Cavity Expansion Method Study of Thermomechanical Behavior of Refractory Materials Under Thermal Gradient. Part I – Presentation of ATHORNA Device and Experimental Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1