Sharath Ankathi, Yu Gan, Zifeng Lu, James A. Littlefield, Liang Jing, Farah O. Ramadan, Jean-Christophe Monfort, Alhassan Badahdah, Hassan El-Houjeiri, Michael Wang
{"title":"Well-to-wheels analysis of greenhouse gas emissions for passenger vehicles in Middle East and North Africa","authors":"Sharath Ankathi, Yu Gan, Zifeng Lu, James A. Littlefield, Liang Jing, Farah O. Ramadan, Jean-Christophe Monfort, Alhassan Badahdah, Hassan El-Houjeiri, Michael Wang","doi":"10.1111/jiec.13500","DOIUrl":null,"url":null,"abstract":"<p>Battery electric vehicles (BEVs) are widely considered a pathway to achieve low carbon mobility. BEVs emit zero emissions from the tailpipe, but their life cycle carbon reduction compared to gasoline vehicles varies based on primary energy sources, electricity generation, and use efficiency. The Middle East and North Africa (MENA) region is an area rich in fossil fuels, meriting a detailed comparison between the emissions from BEV and other powertrains. We developed a MENA-specific life cycle model that estimates well-to-wheel (WTW) greenhouse gas (GHG) emissions from passenger transport with internal combustion engine vehicles (ICEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles, and BEVs. MENA's average WTW GHG emissions for all supply chain steps including combustion emissions from vehicle operation are 767 g/kWh and 84 g CO<sub>2</sub>eq/MJ for electricity and gasoline, respectively, but are highly variable due to heterogeneity in upstream supply chains. The use of hybrid gasoline ICEVs provides the largest emission reduction opportunity for existing vehicle fleets in 9 of the 16 MENA countries. For these nine countries, replacing gasoline ICEVs with HEVs could, on average, reduce country-level life cycle GHG emissions by 47%. There is a similar emission reduction opportunity for 14 of the 16 MENA countries when normalizing vehicle efficiencies irrespective of the powertrain shares and other trends in existing vehicle fleets. Future scenario analysis shows that BEVs would have the lowest WTW GHG emissions among all powertrains in most MENA countries only if significantly reduced electricity transmission losses and cleaner grid mix are realized, although a high cost of infrastructure developments is expected.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"28 4","pages":"800-812"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.13500","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13500","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Battery electric vehicles (BEVs) are widely considered a pathway to achieve low carbon mobility. BEVs emit zero emissions from the tailpipe, but their life cycle carbon reduction compared to gasoline vehicles varies based on primary energy sources, electricity generation, and use efficiency. The Middle East and North Africa (MENA) region is an area rich in fossil fuels, meriting a detailed comparison between the emissions from BEV and other powertrains. We developed a MENA-specific life cycle model that estimates well-to-wheel (WTW) greenhouse gas (GHG) emissions from passenger transport with internal combustion engine vehicles (ICEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles, and BEVs. MENA's average WTW GHG emissions for all supply chain steps including combustion emissions from vehicle operation are 767 g/kWh and 84 g CO2eq/MJ for electricity and gasoline, respectively, but are highly variable due to heterogeneity in upstream supply chains. The use of hybrid gasoline ICEVs provides the largest emission reduction opportunity for existing vehicle fleets in 9 of the 16 MENA countries. For these nine countries, replacing gasoline ICEVs with HEVs could, on average, reduce country-level life cycle GHG emissions by 47%. There is a similar emission reduction opportunity for 14 of the 16 MENA countries when normalizing vehicle efficiencies irrespective of the powertrain shares and other trends in existing vehicle fleets. Future scenario analysis shows that BEVs would have the lowest WTW GHG emissions among all powertrains in most MENA countries only if significantly reduced electricity transmission losses and cleaner grid mix are realized, although a high cost of infrastructure developments is expected.
期刊介绍:
The Journal of Industrial Ecology addresses a series of related topics:
material and energy flows studies (''industrial metabolism'')
technological change
dematerialization and decarbonization
life cycle planning, design and assessment
design for the environment
extended producer responsibility (''product stewardship'')
eco-industrial parks (''industrial symbiosis'')
product-oriented environmental policy
eco-efficiency
Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.