Modulated Degradation Rates of Bone Mineral-Like Calcium Phosphate Glass to Support the Proliferation and Osteogenic Differentiation of Bone Marrow-Derived Stem Cells

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Bionic Engineering Pub Date : 2024-05-20 DOI:10.1007/s42235-024-00540-4
Lizhe He, Yuye Huang, Jiafei Gu, Xiaoling Liu, Jun Yin, Xiang Gao
{"title":"Modulated Degradation Rates of Bone Mineral-Like Calcium Phosphate Glass to Support the Proliferation and Osteogenic Differentiation of Bone Marrow-Derived Stem Cells","authors":"Lizhe He,&nbsp;Yuye Huang,&nbsp;Jiafei Gu,&nbsp;Xiaoling Liu,&nbsp;Jun Yin,&nbsp;Xiang Gao","doi":"10.1007/s42235-024-00540-4","DOIUrl":null,"url":null,"abstract":"<div><p>With an elemental composition similar to bone mineral, and the ability to release phosphorus and calcium that benefit bone regeneration, Calcium Phosphate Glass (CPG) serves as a promising component of bone tissue engineering scaffolds. However, the degradation of CPG composites typically results in increased acidity, and its impact on bone-forming activity is less studied. In this work, we prepared 3D-printed composite scaffolds comprising CPG, Poly-ε-caprolactone (PCL), and various Magnesium Oxide (MgO) contents. Increasing the MgO content effectively suppressed the degradation of CPG, maintaining a physiological pH of the degradation media. While the degradation of CPG/PCL scaffolds resulted in upregulated apoptosis of Rat Bone Marrow-derived Stem Cells (rBMSC), scaffolds containing MgO were free from these negative impacts, and an optimal MgO content of 1 wt% led to the most pronounced osteogenic differentiation of rBMSCs. This work demonstrated that the rapid degradation of CPG impaired the renewability of stem cells through the increased acidity of the surrounding media, and MgO effectively modulated the degradation rate of CPG, thus preventing the negative effects of rapid degradation and supporting the proliferation and osteogenic differentiation of the stem cells.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1960 - 1974"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00540-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With an elemental composition similar to bone mineral, and the ability to release phosphorus and calcium that benefit bone regeneration, Calcium Phosphate Glass (CPG) serves as a promising component of bone tissue engineering scaffolds. However, the degradation of CPG composites typically results in increased acidity, and its impact on bone-forming activity is less studied. In this work, we prepared 3D-printed composite scaffolds comprising CPG, Poly-ε-caprolactone (PCL), and various Magnesium Oxide (MgO) contents. Increasing the MgO content effectively suppressed the degradation of CPG, maintaining a physiological pH of the degradation media. While the degradation of CPG/PCL scaffolds resulted in upregulated apoptosis of Rat Bone Marrow-derived Stem Cells (rBMSC), scaffolds containing MgO were free from these negative impacts, and an optimal MgO content of 1 wt% led to the most pronounced osteogenic differentiation of rBMSCs. This work demonstrated that the rapid degradation of CPG impaired the renewability of stem cells through the increased acidity of the surrounding media, and MgO effectively modulated the degradation rate of CPG, thus preventing the negative effects of rapid degradation and supporting the proliferation and osteogenic differentiation of the stem cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节类骨矿磷酸钙玻璃的降解率以支持骨髓干细胞的增殖和成骨分化
磷酸钙玻璃(CPG)的元素组成与骨矿物质相似,并能释放出有利于骨再生的磷和钙,因此是骨组织工程支架中一种很有前景的成分。然而,CPG 复合材料的降解通常会导致酸度增加,其对骨形成活性的影响研究较少。在这项工作中,我们制备了由 CPG、聚ε-己内酯(PCL)和不同含量的氧化镁(MgO)组成的三维打印复合支架。增加氧化镁含量可有效抑制氯化石蜡的降解,并保持降解介质的生理 pH 值。CPG/PCL 支架的降解导致大鼠骨髓干细胞(rBMSC)凋亡率升高,而含有氧化镁的支架则没有这些负面影响,氧化镁的最佳含量为 1 wt%,可使大鼠骨髓干细胞的成骨分化最为明显。这项研究表明,CPG的快速降解会增加周围培养基的酸度,从而损害干细胞的可再生性,而氧化镁能有效调节CPG的降解速度,从而防止快速降解的负面影响,支持干细胞的增殖和成骨分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
期刊最新文献
Sandwich-Structured Solar Cells with Accelerated Conversion Efficiency by Self-Cooling and Self-Cleaning Design From Perception to Action: Brain-to-Brain Information Transmission of Pigeons Design and Motion Characteristics of a Ray-Inspired Micro-Robot Made of Magnetic Film Bionic Jumping of Humanoid Robot via Online Centroid Trajectory Optimization and High Dynamic Motion Controller Multi-Sensor Fusion for State Estimation and Control of Cable-Driven Soft Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1