Steffen Bickel, Sebastian Quednau, Olav Birlem, Andreas Graff, Frank Altmann, Manuela Junghähnel, Juliana Panchenko
{"title":"Fine-Pitch Copper Nanowire Interconnects for 2.5/3D System Integration","authors":"Steffen Bickel, Sebastian Quednau, Olav Birlem, Andreas Graff, Frank Altmann, Manuela Junghähnel, Juliana Panchenko","doi":"10.1007/s11664-024-11107-8","DOIUrl":null,"url":null,"abstract":"<div><p>Heterogeneous integration is a key driver within the field of advanced electronic packaging. The realization of tomorrow’s highly integrated electronic systems depends on the combination and compatibility of various integration technologies at the same hierarchy level. The adoption of novel bonding technologies for a cost-effective realization of multi-chiplet systems is a key aspect. Cu nanowire (NW) interconnects exhibit distinct advantages in terms of their scalability down to a few micrometers, the resulting joint properties and moderate demands with respect to the surface preparation, and the cleanliness of the bonding environment. No solder or flux is required for the bonding process, but the NW bumps still can compensate low height differences. The bonding process can be carried out near room temperature under ambient conditions. We demonstrate the technological possibility to integrate the Cu-NWs for a bump processing scheme including the Cu seed etching on 300 mm wafer for the first time. This paper focuses on the microstructure evaluation and the shear test of the formed Cu-NW interconnects fabricated under ambient conditions within a few seconds. The microstructure analysis shows the intact bonded interconnects and reveals high-resolution details of Cu-NWs. The shear strength of the formed interconnects varies between 4.6 MPa and 90.5 MPa depending on the bonding and annealing conditions. Overall, the results of this study highlight the potential of Cu-NW interconnects for future 3D heterogeneous system integration.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"53 8","pages":"4410 - 4420"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11664-024-11107-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11107-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous integration is a key driver within the field of advanced electronic packaging. The realization of tomorrow’s highly integrated electronic systems depends on the combination and compatibility of various integration technologies at the same hierarchy level. The adoption of novel bonding technologies for a cost-effective realization of multi-chiplet systems is a key aspect. Cu nanowire (NW) interconnects exhibit distinct advantages in terms of their scalability down to a few micrometers, the resulting joint properties and moderate demands with respect to the surface preparation, and the cleanliness of the bonding environment. No solder or flux is required for the bonding process, but the NW bumps still can compensate low height differences. The bonding process can be carried out near room temperature under ambient conditions. We demonstrate the technological possibility to integrate the Cu-NWs for a bump processing scheme including the Cu seed etching on 300 mm wafer for the first time. This paper focuses on the microstructure evaluation and the shear test of the formed Cu-NW interconnects fabricated under ambient conditions within a few seconds. The microstructure analysis shows the intact bonded interconnects and reveals high-resolution details of Cu-NWs. The shear strength of the formed interconnects varies between 4.6 MPa and 90.5 MPa depending on the bonding and annealing conditions. Overall, the results of this study highlight the potential of Cu-NW interconnects for future 3D heterogeneous system integration.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.