{"title":"Enhancing Communication Reliability: Designing Microwave Links for Bahir Dar-Woretta Connectivity","authors":"Gashaw Mihretu Adega","doi":"10.1155/2024/6535616","DOIUrl":null,"url":null,"abstract":"This paper explores the need for establishing a microwave link between Bahir Dar and Woretta as an alternative communication solution to the existing optical fiber infrastructure. Microwave links offer an effective way to overcome challenges posed by rugged terrains and unfavorable environmental conditions that hinder the deployment of fiber optics. As Woretta emerges as a key economic and investment hub within the Amhara Region, demand for reliable and efficient communication is expected to grow significantly. The study encompasses various aspects of planning and designing the microwave link, including site surveys, consideration of fade margins, frequency planning, link budget calculations, and assessing the feasibility and reliability of the proposed link. The paper employs LINKPlanner 5.4.1 software to simulate and validate the results. Due to terrain constraints, a direct link between Bahir Dar and Woretta is not feasible. Instead, a two-hop link is proposed, involving transmission from Bahir Dar to Zege, and then from Zege to Woretta. This alternative configuration ensures optimal connectivity while addressing the terrain limitations. By presenting a comprehensive analysis and simulation of the microwave link, this paper provides valuable insights into the planning and implementation of a robust communication infrastructure. The proposed microwave link will offer a reliable and efficient alternative to the existing optical fiber network, ensuring uninterrupted connectivity to support the region’s growth and development.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"16 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/6535616","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the need for establishing a microwave link between Bahir Dar and Woretta as an alternative communication solution to the existing optical fiber infrastructure. Microwave links offer an effective way to overcome challenges posed by rugged terrains and unfavorable environmental conditions that hinder the deployment of fiber optics. As Woretta emerges as a key economic and investment hub within the Amhara Region, demand for reliable and efficient communication is expected to grow significantly. The study encompasses various aspects of planning and designing the microwave link, including site surveys, consideration of fade margins, frequency planning, link budget calculations, and assessing the feasibility and reliability of the proposed link. The paper employs LINKPlanner 5.4.1 software to simulate and validate the results. Due to terrain constraints, a direct link between Bahir Dar and Woretta is not feasible. Instead, a two-hop link is proposed, involving transmission from Bahir Dar to Zege, and then from Zege to Woretta. This alternative configuration ensures optimal connectivity while addressing the terrain limitations. By presenting a comprehensive analysis and simulation of the microwave link, this paper provides valuable insights into the planning and implementation of a robust communication infrastructure. The proposed microwave link will offer a reliable and efficient alternative to the existing optical fiber network, ensuring uninterrupted connectivity to support the region’s growth and development.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)