Stability of Vanadium Doped Transition Metal Dichalcogenides under Etching Atmosphere

Sunwen Zhao, R. Xiao, Yuhan Feng, Chuang Tian, Jiawen Liu, Guanghui Yu
{"title":"Stability of Vanadium Doped Transition Metal Dichalcogenides under Etching Atmosphere","authors":"Sunwen Zhao, R. Xiao, Yuhan Feng, Chuang Tian, Jiawen Liu, Guanghui Yu","doi":"10.1002/pssr.202400128","DOIUrl":null,"url":null,"abstract":"Two‐dimensional (2D) transition metal dichalcogenides (TMDs) have attracted intensive interests for its unique electronic, optical, and thermal properties. Doping is necessary to expand the application. However, the stability of doped materials has been overlooked. This study focuses on the stability of monolayer‐doped MoS2 with different vanadium (V) concentrations. It provides a quantitative assessment of the etching results. Findings indicate that the stability of MoS2 under different etching atmospheres follows the series of lightly doped MoS2 (LD), pristine MoS2 (PR), moderately doped MoS2 (MD), and highly doped MoS2 (HD). Our research indicates that the stability of the material is linked to the bonding energy of cations and anions, as well as the amount of lattice distortion, which competes with one another. Low levels of V doping do not lead to significant lattice distortion, and the binding energy between sulfur (S) and V surpasses that of molybdenum (Mo), which is the primary factor. Excessive doping results in lattice distortion, which leads to a multitude of defects and a reduction in durability. This work is important for guiding the assessment of the reliability, the protection of degradation, and application scenarios of TMDs.This article is protected by copyright. All rights reserved.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202400128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two‐dimensional (2D) transition metal dichalcogenides (TMDs) have attracted intensive interests for its unique electronic, optical, and thermal properties. Doping is necessary to expand the application. However, the stability of doped materials has been overlooked. This study focuses on the stability of monolayer‐doped MoS2 with different vanadium (V) concentrations. It provides a quantitative assessment of the etching results. Findings indicate that the stability of MoS2 under different etching atmospheres follows the series of lightly doped MoS2 (LD), pristine MoS2 (PR), moderately doped MoS2 (MD), and highly doped MoS2 (HD). Our research indicates that the stability of the material is linked to the bonding energy of cations and anions, as well as the amount of lattice distortion, which competes with one another. Low levels of V doping do not lead to significant lattice distortion, and the binding energy between sulfur (S) and V surpasses that of molybdenum (Mo), which is the primary factor. Excessive doping results in lattice distortion, which leads to a multitude of defects and a reduction in durability. This work is important for guiding the assessment of the reliability, the protection of degradation, and application scenarios of TMDs.This article is protected by copyright. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺钒过渡金属二卤化物在蚀刻气氛下的稳定性
二维(2D)过渡金属二卤化物(TMDs)因其独特的电子、光学和热学特性而备受关注。掺杂是扩大应用的必要条件。然而,掺杂材料的稳定性一直被忽视。本研究的重点是不同钒(V)浓度的单层掺杂 MoS2 的稳定性。它对蚀刻结果进行了定量评估。研究结果表明,MoS2 在不同蚀刻气氛下的稳定性依次为轻度掺杂 MoS2 (LD)、原始 MoS2 (PR)、中度掺杂 MoS2 (MD) 和高度掺杂 MoS2 (HD)。我们的研究表明,材料的稳定性与阳离子和阴离子的成键能以及晶格畸变量有关,它们之间存在竞争关系。低水平的钒掺杂不会导致明显的晶格畸变,而硫(S)和钒之间的结合能超过了钼(Mo)的结合能,这才是主要因素。过度掺杂会导致晶格畸变,从而产生大量缺陷并降低耐用性。这项工作对于指导评估 TMD 的可靠性、降解保护和应用方案非常重要。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGaN/GaN Hybrid‐Nanostructure Light Emitting Diodes with Emission Wavelength Green and Beyond TiO2‐Based Schottky Diodes as Bidirectional Switches for Bipolar Resistive Memories Electronic, transport and optical properties of potential transparent conductive material Rb2Pb2O3 Low‐threshold Amplified Spontaneous Emission of Dion‐Jacobson Phase Perovskite Films Achieved by Tuning Diamine Cation Size Characteristics of Vertical Transistors on a GaN Substrate Fabricated via Na‐flux Method and Enlargement of the Substrate Surpassing 6 Inches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1