Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior

M. Maswadah, Seham Mohamed
{"title":"Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior","authors":"M. Maswadah, Seham Mohamed","doi":"10.11648/j.sjams.20241202.12","DOIUrl":null,"url":null,"abstract":"In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.\n","PeriodicalId":490938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"121 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.11648/j.sjams.20241202.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we introduce an objective prior based on the kernel density estimation to eliminate the subjectivity of the Bayesian estimation for information other than data. For comparing the kernel prior with the informative gamma prior, the mean squared error and the mean percentage error for the generalized exponential (GE) distribution parameters estimations are studied using both symmetric and asymmetric loss functions via Monte Carlo simulations. The simulation results indicated that the kernel prior outperforms the informative gamma prior. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核先验的广义指数分布贝叶斯推理
在这项工作中,我们引入了基于核密度估计的客观先验,以消除贝叶斯估计对数据以外信息的主观性。为了比较核先验与信息伽马先验,我们使用对称和非对称损失函数,通过蒙特卡罗模拟研究了广义指数分布(GE)参数估计的均方误差和平均百分比误差。模拟结果表明,核先验优于信息伽马先验。最后,给出了一个数值示例来证明所提出的先验的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior ETS - ARIMA Intervention Modelling of Bangladesh Taka/Nigerian Naira Exchange Rates Empowerment Through Skill Acquisition and Its Impact on ART Adherence Among HIV-Positive Adults in Lagos, Nigeria during the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1