Optimal Duration of Observations During Seismic Inspection of Buildings

Mikhail N. Voskresenskiy, Alena A. Kurdanova
{"title":"Optimal Duration of Observations During Seismic Inspection of Buildings","authors":"Mikhail N. Voskresenskiy, Alena A. Kurdanova","doi":"10.22363/1815-5235-2024-20-2-182-194","DOIUrl":null,"url":null,"abstract":"Studying the nature of the occurrence and propagation of microseismic tremors has not lost its relevance over the past few decades. Currently, the analysis of microseisms is the basis of some engineering and geological studies, including those aimed at the inspection of structures of various purposes. The procedure for preparing and conducting surveys is governed by a system of regulatory documents. However, the current codes and specifications represent a general guide for assessing the operational properties of building structures. Therefore, specific survey methods need to be clarified and detailed. Describes the experiment of examining the building regarding the dynamics of frequency characteristics within 24 hours. The observation system was implemented in the form of 16 points, evenly distributed over the volume of the building. Spectral analysis based on FFT was carried out to identify the time intervals within the 24-hour period with a pronounced maximum and minimum level of man-induced impact on the studied subject. During the hours of maximum exposure, the spectra were correlated according to records of different duration in terms of the correspondence of frequency components. The necessary and sufficient duration of registration of microseismic vibrations was derived to determine the frequency of natural vibration of a building when the observation points are located on the lower and upper floors.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2024-20-2-182-194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Studying the nature of the occurrence and propagation of microseismic tremors has not lost its relevance over the past few decades. Currently, the analysis of microseisms is the basis of some engineering and geological studies, including those aimed at the inspection of structures of various purposes. The procedure for preparing and conducting surveys is governed by a system of regulatory documents. However, the current codes and specifications represent a general guide for assessing the operational properties of building structures. Therefore, specific survey methods need to be clarified and detailed. Describes the experiment of examining the building regarding the dynamics of frequency characteristics within 24 hours. The observation system was implemented in the form of 16 points, evenly distributed over the volume of the building. Spectral analysis based on FFT was carried out to identify the time intervals within the 24-hour period with a pronounced maximum and minimum level of man-induced impact on the studied subject. During the hours of maximum exposure, the spectra were correlated according to records of different duration in terms of the correspondence of frequency components. The necessary and sufficient duration of registration of microseismic vibrations was derived to determine the frequency of natural vibration of a building when the observation points are located on the lower and upper floors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑物抗震检查过程中的最佳观测时间
在过去几十年里,研究微地震发生和传播的性质并没有失去其现实意义。目前,微地震分析是一些工程和地质研究的基础,包括那些旨在检查各种用途结构的研究。准备和进行勘测的程序受规范性文件系统的制约。不过,现行的规范和规格只是评估建筑结构运行特性的一般指南。因此,需要明确和详细说明具体的勘测方法。描述了在 24 小时内检查建筑物频率特性动态的实验。观测系统以 16 个点的形式实施,均匀分布在建筑物的整个体积内。通过基于 FFT 的频谱分析,确定了 24 小时内对研究对象的人为影响明显最大和最小的时间间隔。在最大暴露时间段内,根据频率成分的对应关系,对不同持续时间的记录进行频谱关联。得出了微地震振动登记的必要和充分持续时间,以确定观测点位于低层和高层时建筑物的自然振动频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
26
审稿时长
18 weeks
期刊最新文献
Optimal Duration of Observations During Seismic Inspection of Buildings Effect of Sinusoidal Fiber Waviness on Non-Linear Dynamic Performance of Laminated Composite Plates with Variable Fiber Spacing Deformation of Cylindrical Shell Made of 9X2 Steel Under Complex Loading Parameterization of Maxwell - Cremona Diagram for Determining Forces in Elements of a Scissors Truss Geometric Investigation of Three Thin Shells with Ruled Middle Surfaces with the Same Main Frame
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1