{"title":"Registration of Interferometric DEM by Deep Artificial Neural Networks Using GPS Control Points’ Coordinates as Network Target","authors":"A. Serwa, Abdul Baser Qasimi, Vahid Isazade","doi":"10.26833/ijeg.1467293","DOIUrl":null,"url":null,"abstract":"The Shuttle Radar Topography Mission (SRTM) satellite’s digital elevation model (DEM) is an important tool for studying topographic features on a medium-spacing scale. Data were collected and processed using the satellite’s orbital and navigation parameters with selected global GPS stations for verification. Distortion may be expressed by surveying measurements, such as position, distance, area, and shape. This study focuses on this distortion and proposes a new registration method to reduce its effect. Because of generality, the purpose shapes were excluded from this study. The proposed registration method depends on precise GPS control points that act as the ground truth for describing the considered surveying measurements. The processing was carried out using deep artificial neural networks (DANN) to produce a new registered DEM. A comparison was made between the original DEM and the new one, focusing on the selected surveying measurements. Another comparison was made between the GPS coordinates and SRTM polynomials to determine the potential of the proposed system. Some statistical investigations were applied to determine the level of significance of the distortion in each surveying measurement. The study shows that the distortion is highly significant; therefore, the proposed registration method is recommended to fix the distortion.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" 18","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26833/ijeg.1467293","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The Shuttle Radar Topography Mission (SRTM) satellite’s digital elevation model (DEM) is an important tool for studying topographic features on a medium-spacing scale. Data were collected and processed using the satellite’s orbital and navigation parameters with selected global GPS stations for verification. Distortion may be expressed by surveying measurements, such as position, distance, area, and shape. This study focuses on this distortion and proposes a new registration method to reduce its effect. Because of generality, the purpose shapes were excluded from this study. The proposed registration method depends on precise GPS control points that act as the ground truth for describing the considered surveying measurements. The processing was carried out using deep artificial neural networks (DANN) to produce a new registered DEM. A comparison was made between the original DEM and the new one, focusing on the selected surveying measurements. Another comparison was made between the GPS coordinates and SRTM polynomials to determine the potential of the proposed system. Some statistical investigations were applied to determine the level of significance of the distortion in each surveying measurement. The study shows that the distortion is highly significant; therefore, the proposed registration method is recommended to fix the distortion.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico