{"title":"Principal component analysis for zero-inflated compositional data","authors":"Kipoong Kim , Jaesung Park , Sungkyu Jung","doi":"10.1016/j.csda.2024.107989","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in DNA sequencing technology have led to a growing interest in microbiome data. Since the data are often high-dimensional, there is a clear need for dimensionality reduction. However, the compositional nature and zero-inflation of microbiome data present many challenges in developing new methodologies. New PCA methods for zero-inflated compositional data are presented, based on a novel framework called principal compositional subspace. These methods aim to identify both the principal compositional subspace and the corresponding principal scores that best approximate the given data, ensuring that their reconstruction remains within the compositional simplex. To this end, the constrained optimization problems are established and alternating minimization algorithms are provided to solve the problems. The theoretical properties of the principal compositional subspace, particularly focusing on its existence and consistency, are further investigated. Simulation studies have demonstrated that the methods achieve lower reconstruction errors than the existing log-ratio PCA in the presence of a linear pattern and have shown comparable performance in a curved pattern. The methods have been applied to four microbiome compositional datasets with excessive zeros, successfully recovering the underlying low-rank structure.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"198 ","pages":"Article 107989"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000732","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in DNA sequencing technology have led to a growing interest in microbiome data. Since the data are often high-dimensional, there is a clear need for dimensionality reduction. However, the compositional nature and zero-inflation of microbiome data present many challenges in developing new methodologies. New PCA methods for zero-inflated compositional data are presented, based on a novel framework called principal compositional subspace. These methods aim to identify both the principal compositional subspace and the corresponding principal scores that best approximate the given data, ensuring that their reconstruction remains within the compositional simplex. To this end, the constrained optimization problems are established and alternating minimization algorithms are provided to solve the problems. The theoretical properties of the principal compositional subspace, particularly focusing on its existence and consistency, are further investigated. Simulation studies have demonstrated that the methods achieve lower reconstruction errors than the existing log-ratio PCA in the presence of a linear pattern and have shown comparable performance in a curved pattern. The methods have been applied to four microbiome compositional datasets with excessive zeros, successfully recovering the underlying low-rank structure.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]