{"title":"Cavitation cloud impingement and scattering motion of jet in rock breaking process","authors":"","doi":"10.1016/j.petsci.2024.05.015","DOIUrl":null,"url":null,"abstract":"<div><div>The cavitation cloud impingement of the jet in the rock breaking process was experimentally investigated to reveal the jet erosion mechanism in drilling of petroleum exploitation. Serial erosion tests and flow visualization were performed, where the cavitation cloud motion in the erosion crater was obtained with the designed transparent specimen. Various erosion patterns were identified in the whole erosion process based on the eroded specimen topography. The shallow eroded crater with a shrinking erosion area is generated by the combination of impinging and scattering cavitation clouds. The increase of <em>l</em><sub>d</sub> promotes the development of cavitation cloud <em>σ</em><sub>c</sub> but reduces the impingement frequency <em>f</em><sub>d</sub>, suggesting that the jet aggressive ability is enhanced when the balance between <em>σ</em><sub>c</sub> and <em>f</em><sub>d</sub> is reached. The cavitation cloud motion in the erosion crater was investigated with the transparent specimen. The erosion in the crater at shorter exposure periods <em>T</em><sub>e</sub> is generated by the combination of impingement and restricted scattering of cavitation clouds. With the continuous development of the erosion damage, the jet's aggressive ability is diminished due to the erosion expansion on sandstone, where the cavitation clouds impinge on the target and then collapse and vanish without restricted scattering.</div></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624001328","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The cavitation cloud impingement of the jet in the rock breaking process was experimentally investigated to reveal the jet erosion mechanism in drilling of petroleum exploitation. Serial erosion tests and flow visualization were performed, where the cavitation cloud motion in the erosion crater was obtained with the designed transparent specimen. Various erosion patterns were identified in the whole erosion process based on the eroded specimen topography. The shallow eroded crater with a shrinking erosion area is generated by the combination of impinging and scattering cavitation clouds. The increase of ld promotes the development of cavitation cloud σc but reduces the impingement frequency fd, suggesting that the jet aggressive ability is enhanced when the balance between σc and fd is reached. The cavitation cloud motion in the erosion crater was investigated with the transparent specimen. The erosion in the crater at shorter exposure periods Te is generated by the combination of impingement and restricted scattering of cavitation clouds. With the continuous development of the erosion damage, the jet's aggressive ability is diminished due to the erosion expansion on sandstone, where the cavitation clouds impinge on the target and then collapse and vanish without restricted scattering.
实验研究了破岩过程中射流的空化云撞击,揭示了石油开采钻井中的射流侵蚀机理。对设计的透明试样进行了连续侵蚀试验和流动可视化,获得了侵蚀坑中的空化云运动。根据被侵蚀试样的地形,确定了整个侵蚀过程中的各种侵蚀模式。在冲击和散射空化云的共同作用下,产生了侵蚀面积不断缩小的浅侵蚀坑。ld的增加会促进空化云σc的发展,但会降低撞击频率fd,这表明当σc和fd达到平衡时,射流的侵蚀能力会增强。利用透明试样对侵蚀坑中的空化云运动进行了研究。在较短的暴露周期 Te 下,侵蚀坑中的侵蚀是由空化云的撞击和受限散射共同作用产生的。随着侵蚀破坏的不断发展,由于砂岩上的侵蚀扩展,射流的侵蚀能力减弱,空化云撞击目标,然后坍塌并消失,没有限制性散射。
期刊介绍:
Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.