{"title":"Exploring ionospheric plasma density trends in the Indian equatorial crest region under varying solar activity conditions","authors":"","doi":"10.1016/j.jastp.2024.106266","DOIUrl":null,"url":null,"abstract":"<div><p>Long-term trends in the evolution of ionospheric plasma at Hyderabad (17.38<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>N, 78.48<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>E; 8.52<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span>N Magnetic Latitude), a near-equatorial anomaly (EIA) crest region of the Indian ionospheric sector, have been studied using 9 years of vertical Total Electron Content (TEC) data from 2004 to 2009 and 2011 to 2013 using global positioning satellites (GPS) measurements. The study examined the mean diurnal, monthly, seasonal, and yearly variations of TEC during geomagnetic quiet days in different seasons from 2004 to 2013. The findings reveal that the daytime TEC at the anomaly crest region exhibits semi-annual variations throughout the study period, while midnight TEC shows semi-annual variation only during the high solar activity years of 2011–2013. The winter anomaly was observed in 2004 and 2006. The study also assessed the performance of the International Reference Ionosphere (IRI) 2016 model in reproducing GPS TEC variability at the equatorial crest region. The diurnal and seasonal variation patterns in IRI-TEC show a good correlation with GPS TEC. However, the IRI 2016 model tends to overestimate TEC values during low solar activity conditions (2006–2009) but represents TEC variations reasonably well during high solar activity periods (2011–2013). Nevertheless, the IRI model fails to capture the wide plateau-like structure in the peak TEC, typically occurring between 1200–1600 IST at Hyderabad. Additionally, IRI-TEC consistently indicates very low TEC values during the early morning hours, whereas GPS-TEC measurements suggest a significant presence of plasma density. The study suggests a strong influence of the solar cycle on TEC variations at Hyderabad, evident from the positive correlation (R<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo></mrow></math></span> 0.71) with the F10.7 cm index. This characteristic is also well represented by the IRI 2016 model.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624000944","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term trends in the evolution of ionospheric plasma at Hyderabad (17.38N, 78.48E; 8.52N Magnetic Latitude), a near-equatorial anomaly (EIA) crest region of the Indian ionospheric sector, have been studied using 9 years of vertical Total Electron Content (TEC) data from 2004 to 2009 and 2011 to 2013 using global positioning satellites (GPS) measurements. The study examined the mean diurnal, monthly, seasonal, and yearly variations of TEC during geomagnetic quiet days in different seasons from 2004 to 2013. The findings reveal that the daytime TEC at the anomaly crest region exhibits semi-annual variations throughout the study period, while midnight TEC shows semi-annual variation only during the high solar activity years of 2011–2013. The winter anomaly was observed in 2004 and 2006. The study also assessed the performance of the International Reference Ionosphere (IRI) 2016 model in reproducing GPS TEC variability at the equatorial crest region. The diurnal and seasonal variation patterns in IRI-TEC show a good correlation with GPS TEC. However, the IRI 2016 model tends to overestimate TEC values during low solar activity conditions (2006–2009) but represents TEC variations reasonably well during high solar activity periods (2011–2013). Nevertheless, the IRI model fails to capture the wide plateau-like structure in the peak TEC, typically occurring between 1200–1600 IST at Hyderabad. Additionally, IRI-TEC consistently indicates very low TEC values during the early morning hours, whereas GPS-TEC measurements suggest a significant presence of plasma density. The study suggests a strong influence of the solar cycle on TEC variations at Hyderabad, evident from the positive correlation (R 0.71) with the F10.7 cm index. This characteristic is also well represented by the IRI 2016 model.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.