Tuning the cross-linked structure of basic poly(ionic liquid) to develop an efficient catalyst for the conversion of vinyl carbonate to dimethyl carbonate

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chinese Journal of Chemical Engineering Pub Date : 2024-08-01 DOI:10.1016/j.cjche.2024.05.007
{"title":"Tuning the cross-linked structure of basic poly(ionic liquid) to develop an efficient catalyst for the conversion of vinyl carbonate to dimethyl carbonate","authors":"","doi":"10.1016/j.cjche.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Dimethyl carbonate (DMC) is a crucial chemical raw material widely used in organic synthesis, lithium-ion battery electrolytes, and various other fields. The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol. However, the utilization of this catalyst presents several challenges during the process, including equipment corrosion, the generation of solid waste, susceptibility to deactivation, and complexities in separation and recovery. To address these limitations, a series of alkaline poly(ionic liquid)s, <em>i.e.</em> [DVBPIL][PHO], [DVCPIL][PHO], and [TBVPIL][PHO], with different cross-linking degrees and structures, were synthesized through the construction of cross-linked polymeric monomers and functionalization. These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics. Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC. It was discovered that the appropriate cross-linking degree and structure of the [DVCPIL][PHO] catalyst resulted in a DMC yield of up to 80.6%. Furthermore, this catalyst material exhibited good stability, maintaining its catalytic activity after repeated use five times without significant changes. The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.</p></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"72 ","pages":"Pages 106-116"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124001721","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dimethyl carbonate (DMC) is a crucial chemical raw material widely used in organic synthesis, lithium-ion battery electrolytes, and various other fields. The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol. However, the utilization of this catalyst presents several challenges during the process, including equipment corrosion, the generation of solid waste, susceptibility to deactivation, and complexities in separation and recovery. To address these limitations, a series of alkaline poly(ionic liquid)s, i.e. [DVBPIL][PHO], [DVCPIL][PHO], and [TBVPIL][PHO], with different cross-linking degrees and structures, were synthesized through the construction of cross-linked polymeric monomers and functionalization. These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics. Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC. It was discovered that the appropriate cross-linking degree and structure of the [DVCPIL][PHO] catalyst resulted in a DMC yield of up to 80.6%. Furthermore, this catalyst material exhibited good stability, maintaining its catalytic activity after repeated use five times without significant changes. The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整碱性聚(离子液体)的交联结构以开发一种将 EC 转化为 DMC 的高效催化剂
碳酸二甲酯(DMC)是一种重要的化工原料,被广泛应用于有机合成、锂离子电池电解液等多个领域。目前的主要工业工艺采用传统的甲醇钠碱性催化剂,通过碳酸乙烯酯和甲醇之间的酯交换反应生产 DMC。然而,使用这种催化剂在工艺过程中会遇到一些挑战,包括设备腐蚀、产生固体废物、易失活以及分离和回收的复杂性。针对这些局限性,我们通过构建交联聚合物单体并进行官能化处理,合成了一系列具有不同交联度和结构的碱性聚(离子液体),即[DVBPIL][PHO]、[DVCPIL][PHO]和[TBVPIL][PHO]。这些聚(离子液体)具有交联结构和可控的阳离子和阴离子特性。研究人员调查了交联度和结构对合成 DMC 的酯交换催化性能的影响。研究发现,[DVCPIL][PHO] 催化剂的适当交联度和结构可使 DMC 收率高达 80.6%。此外,这种催化剂材料还表现出良好的稳定性,在重复使用五次后仍能保持催化活性而无明显变化。这项研究的结果表明,在酯交换反应合成 DMC 的过程中,使用碱性聚(离子液体)作为传统催化剂的一种高效、可持续的替代品具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
期刊最新文献
A model free adaptive control method based on self-adjusting PID algorithm in pH neutralization process Preparation of Mn-Ce oxide-loaded Al2O3 by citric acid-assisted impregnation for enhanced catalytic ozonation degradation of dye wastewater A fuzzy compensation-Koopman model predictive control design for pressure regulation in proten exchange membrane electrolyzer Multi-timescale feature extraction method of wastewater treatment process based on adaptive entropy Preparation of coconut oil/aluminum nitride/expanded graphite composite phase change materials with high thermal conductivity and stable shape for thermal energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1