A size shrinkable dendrimer-lipid hybrid nanoassembly for reversing tumor drug resistance

IF 9.1 Q1 ENGINEERING, CHEMICAL Green Chemical Engineering Pub Date : 2024-05-18 DOI:10.1016/j.gce.2024.05.001
Xuanrong Sun , Tenghan Zhang , Zhao Lou , Yujie Zhou , Yuteng Chu , Dongfang Zhou , Juhong Zhu , Yue Cai , Jie Shen
{"title":"A size shrinkable dendrimer-lipid hybrid nanoassembly for reversing tumor drug resistance","authors":"Xuanrong Sun ,&nbsp;Tenghan Zhang ,&nbsp;Zhao Lou ,&nbsp;Yujie Zhou ,&nbsp;Yuteng Chu ,&nbsp;Dongfang Zhou ,&nbsp;Juhong Zhu ,&nbsp;Yue Cai ,&nbsp;Jie Shen","doi":"10.1016/j.gce.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Drug resistance is a major obstacle in tumor therapy. One effective approach to overcoming this issue is by improving the penetration of drugs into the lesions. Here, we report size shrinkable dendrimer-lipid hybrid nanoassemblies (PATU-lipid-PEG/DOX). The PATU-lipid-PEG/DOX have initial sizes of ∼92 nm, which are ideal for blood circulation and tumor vascular penetration. Once PATU-lipid-PEG/DOX at tumor sites, they will disassemble and release small dendrimers (∼3 nm) to realize deep tumor penetration. As a result, Doxorubicin (DOX) can be delivered intracellularly, thereby reversing tumor multidrug resistance. The efficacy of PATU-lipid-PEG/DOX was validated in drug-resistant tumor mice. This study provides a versatile drug delivery platform to address the challenges of tumor drug resistance.</div></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"6 1","pages":"Pages 116-125"},"PeriodicalIF":9.1000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952824000359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Drug resistance is a major obstacle in tumor therapy. One effective approach to overcoming this issue is by improving the penetration of drugs into the lesions. Here, we report size shrinkable dendrimer-lipid hybrid nanoassemblies (PATU-lipid-PEG/DOX). The PATU-lipid-PEG/DOX have initial sizes of ∼92 nm, which are ideal for blood circulation and tumor vascular penetration. Once PATU-lipid-PEG/DOX at tumor sites, they will disassemble and release small dendrimers (∼3 nm) to realize deep tumor penetration. As a result, Doxorubicin (DOX) can be delivered intracellularly, thereby reversing tumor multidrug resistance. The efficacy of PATU-lipid-PEG/DOX was validated in drug-resistant tumor mice. This study provides a versatile drug delivery platform to address the challenges of tumor drug resistance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于逆转肿瘤抗药性的尺寸可收缩树枝状聚合物-脂质混合纳米组件
抗药性是肿瘤治疗的一大障碍。克服这一问题的有效方法之一是提高药物对病灶的穿透力。在此,我们报告了尺寸可收缩的树枝状聚合物-脂质混合纳米组合物(PATU-lipid-PEG/DOX)。PATU-lipid-PEG/DOX 的初始尺寸为 92 纳米,非常适合血液循环和肿瘤血管穿透。一旦 PATU-lipid-PEG/DOX 到达肿瘤部位,它们就会分解并释放出小树枝状分子(∼3 nm),从而实现肿瘤的深层穿透。因此,多柔比星(DOX)可在细胞内递送,从而逆转肿瘤的多药耐药性。PATU-脂质-PEG/DOX在耐药肿瘤小鼠中的疗效得到了验证。这项研究为应对肿瘤耐药性的挑战提供了一个多功能的给药平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
期刊最新文献
Outside Back Cover OFC: Outside Front Cover OFC: Outside Front Cover Outside Back Cover Outside Back Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1