Investigation of Asphaltene Precipitation and Reservoir Damage during CO2 Flooding in High-Pressure, High-Temperature Sandstone Oil Reservoirs

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM SPE Journal Pub Date : 2024-05-01 DOI:10.2118/214805-pa
Lei Li, Mingjian Wang, Yu-liang Su, Xiao-gang Gao, Wen-dong Wang, Jia-wei Tu, Xin-hao Wang
{"title":"Investigation of Asphaltene Precipitation and Reservoir Damage during CO2 Flooding in High-Pressure, High-Temperature Sandstone Oil Reservoirs","authors":"Lei Li, Mingjian Wang, Yu-liang Su, Xiao-gang Gao, Wen-dong Wang, Jia-wei Tu, Xin-hao Wang","doi":"10.2118/214805-pa","DOIUrl":null,"url":null,"abstract":"\n Asphaltenes are heavy aromatic hydrocarbon compounds contained in reservoir fluids and may precipitate when the reservoir pressure is reduced by production or when gas is injected into the reservoir, and then further deposit on pore-throat surfaces causing reservoir damage. At present, the research on asphaltene precipitation and reservoir damage is carried out in conventional reservoirs, and the influence of CO2 injection under high-pressure, high-temperature (HPHT) conditions has not yet been clearly understood. In this work, we combined perturbed-chain statistical association fluid theory (PC-SAFT) calculation, experiments, phase-state simulation, and numerical simulation to predict the asphaltene precipitation with different pressures, temperatures, and amounts of injected gas and to clarify the influence on reservoir permeability and oil production when using CO2 injection. The results show that the precipitation of asphaltenes in the process of CO2 injection is the desorption of colloid-asphaltene inclusions caused by gas molecules and then the mutual polymerization process between dispersed asphaltene molecules. CO2 injection will increase the amount of precipitation and move the precipitation curve to the right side. The degree of permeability reduction caused by the deposition of asphaltenes in the core is 12.87–37.54%; the deposition of asphaltenes in the reservoir is mainly around the injection/production wells and along the injected gas profile. Considering asphaltenes, the oil recovery degree is reduced by 1.5%, and the injection rate is reduced by 17%. The reservoir pressure, temperature, and physical properties have a strong correlation with the degree of reservoir damage, while the initial asphaltene content has a low correlation. This work will be of great interest to operators seeking to enhance oil recovery by CO2 injection in deep reservoirs.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/214805-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

Abstract

Asphaltenes are heavy aromatic hydrocarbon compounds contained in reservoir fluids and may precipitate when the reservoir pressure is reduced by production or when gas is injected into the reservoir, and then further deposit on pore-throat surfaces causing reservoir damage. At present, the research on asphaltene precipitation and reservoir damage is carried out in conventional reservoirs, and the influence of CO2 injection under high-pressure, high-temperature (HPHT) conditions has not yet been clearly understood. In this work, we combined perturbed-chain statistical association fluid theory (PC-SAFT) calculation, experiments, phase-state simulation, and numerical simulation to predict the asphaltene precipitation with different pressures, temperatures, and amounts of injected gas and to clarify the influence on reservoir permeability and oil production when using CO2 injection. The results show that the precipitation of asphaltenes in the process of CO2 injection is the desorption of colloid-asphaltene inclusions caused by gas molecules and then the mutual polymerization process between dispersed asphaltene molecules. CO2 injection will increase the amount of precipitation and move the precipitation curve to the right side. The degree of permeability reduction caused by the deposition of asphaltenes in the core is 12.87–37.54%; the deposition of asphaltenes in the reservoir is mainly around the injection/production wells and along the injected gas profile. Considering asphaltenes, the oil recovery degree is reduced by 1.5%, and the injection rate is reduced by 17%. The reservoir pressure, temperature, and physical properties have a strong correlation with the degree of reservoir damage, while the initial asphaltene content has a low correlation. This work will be of great interest to operators seeking to enhance oil recovery by CO2 injection in deep reservoirs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压高温砂岩油藏二氧化碳充注过程中沥青质析出和储层破坏调查
沥青质是储层流体中含有的重芳烃化合物,当储层压力因生产而降低或向储层注入气体时,沥青质可能会析出,然后进一步沉积在孔喉表面,造成储层损害。目前,有关沥青质沉淀和储层损害的研究都是在常规储层中进行的,对高压高温(HPHT)条件下注入二氧化碳的影响还没有清楚的认识。在这项工作中,我们结合扰动链统计关联流体理论(PC-SAFT)计算、实验、相态模拟和数值模拟,预测了不同压力、温度和注入气量下的沥青质析出,并阐明了在使用二氧化碳注入时对储层渗透率和石油产量的影响。结果表明,在注入二氧化碳的过程中,沥青质的析出是气体分子对胶体-沥青质包裹体的解吸作用,然后是分散的沥青质分子之间的相互聚合过程。二氧化碳的注入会增加析出量,并使析出曲线向右移动。沥青质在岩心沉积造成的渗透率降低程度为 12.87%-37.54%;沥青质在储层中的沉积主要集中在注采井周围和注气剖面上。考虑到沥青质,采油率降低了 1.5%,注入率降低了 17%。储层压力、温度和物理性质与储层损害程度有很强的相关性,而初始沥青质含量的相关性较低。这项研究对于希望通过在深层油藏注入二氧化碳提高石油采收率的运营商来说具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
期刊最新文献
Experimental Study on the Effect of Rock Mechanical Properties and Fracture Morphology Features on Lost Circulation Spatiotemporal X-Ray Imaging of Neat and Viscosified CO2 in Displacement of Brine-Saturated Porous Media Novel Resin-Coated Sand Placement Design Guidelines for Controlling Proppant Flowback Post-Slickwater Hydraulic Fracturing Treatments Study on Plugging the Multiscale Water Channeling in Low-Permeability Heterogeneous Porous Media Based on the Growth of Bacteria Integrated Optimization of Hybrid Steam-Solvent Injection in Post-CHOPS Reservoirs with Consideration of Wormhole Networks and Foamy Oil Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1