Wenjun Ma , Bin Chen , Haibo Li , Lixia Hao , Jianguan Chen , Yi Jia , Daozheng Liu
{"title":"Evolution and control of inclusions of Ti-bearing ultra-low carbon steel during the steelmaking process","authors":"Wenjun Ma , Bin Chen , Haibo Li , Lixia Hao , Jianguan Chen , Yi Jia , Daozheng Liu","doi":"10.1016/j.pnsc.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>This article investigates the evolution and control of inclusions in the smelting process of titanium containing ultra-low carbon steel. Through industrial experiments, the influence of oxygen content before aluminum addition on inclusions in ultra-low carbon IF steel was explored, and the evolution process of inclusions was studied. The microstructure of different types of inclusions was observed using three-dimensional analysis techniques. Research has found that the oxygen content before aluminum addition has no significant effect on the final oxygen content. However, under low aluminum and low oxygen conditions, the size of inclusions formed is small and difficult to float and remove. Even if the cycle time is extended, the AF index of inclusions remains at a high level. Through three-dimensional morphology analysis of inclusions, it was found that alumina formed under high aluminum and high oxygen conditions is very dense, while inclusions are relatively loose under low aluminum and low oxygen conditions. In addition, through the analysis of aluminum oxygen supersaturation before the formation of aluminum oxide inclusions, it was found that due to the low oxygen content, the nucleation rate of aluminum oxide in the early stage of inclusion formation is relatively low, and the inclusions grow along the trajectory of oxygen, ultimately forming polycrystalline aluminum oxide inclusions. This article also observed for the first time the initial three-dimensional morphology of Al Ti inclusions, providing a theoretical basis for further optimizing smelting processes and controlling inclusions.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001187","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates the evolution and control of inclusions in the smelting process of titanium containing ultra-low carbon steel. Through industrial experiments, the influence of oxygen content before aluminum addition on inclusions in ultra-low carbon IF steel was explored, and the evolution process of inclusions was studied. The microstructure of different types of inclusions was observed using three-dimensional analysis techniques. Research has found that the oxygen content before aluminum addition has no significant effect on the final oxygen content. However, under low aluminum and low oxygen conditions, the size of inclusions formed is small and difficult to float and remove. Even if the cycle time is extended, the AF index of inclusions remains at a high level. Through three-dimensional morphology analysis of inclusions, it was found that alumina formed under high aluminum and high oxygen conditions is very dense, while inclusions are relatively loose under low aluminum and low oxygen conditions. In addition, through the analysis of aluminum oxygen supersaturation before the formation of aluminum oxide inclusions, it was found that due to the low oxygen content, the nucleation rate of aluminum oxide in the early stage of inclusion formation is relatively low, and the inclusions grow along the trajectory of oxygen, ultimately forming polycrystalline aluminum oxide inclusions. This article also observed for the first time the initial three-dimensional morphology of Al Ti inclusions, providing a theoretical basis for further optimizing smelting processes and controlling inclusions.
本文研究了含钛超低碳钢冶炼过程中夹杂物的演变与控制。通过工业实验,探讨了加铝前氧含量对超低碳 IF 钢中夹杂物的影响,并研究了夹杂物的演变过程。利用三维分析技术观察了不同类型夹杂物的微观结构。研究发现,加铝前的氧含量对最终氧含量没有显著影响。然而,在低铝低氧条件下,形成的夹杂物尺寸较小,难以浮起和去除。即使延长循环时间,夹杂物的 AF 指数仍保持在较高水平。通过对夹杂物的三维形态分析发现,在高铝高氧条件下形成的氧化铝非常致密,而在低铝低氧条件下形成的夹杂物则相对疏松。此外,通过分析氧化铝包体形成前的铝氧过饱和度,发现由于氧含量较低,包体形成初期氧化铝的成核率相对较低,包体沿着氧的轨迹生长,最终形成多晶氧化铝包体。本文还首次观察到了铝钛夹杂物的初始三维形貌,为进一步优化冶炼工艺和控制夹杂物提供了理论依据。
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.