{"title":"Improving machining characteristics of electrical discharge machining by superimposing impulse current","authors":"","doi":"10.1016/j.cirp.2024.04.019","DOIUrl":null,"url":null,"abstract":"<div><p>This paper aims to enhance the machining characteristics of sinking electrical discharge machining by superimposing an impulse current on a conventional rectangular pulse. The material removal was found to be more significant when the time point of superposition was set earlier after the dielectric breakdown, as the plasma diameter is smaller. However, superimposition immediately after the discharge ignition leads to a higher tool wear ratio. Through experimentation and simulation, it was determined that the optimal time point to increase material removal while keeping tool wear low is approximately 12.5 μs when the rectangular pulse duration was 50 μs.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 113-116"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000386","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to enhance the machining characteristics of sinking electrical discharge machining by superimposing an impulse current on a conventional rectangular pulse. The material removal was found to be more significant when the time point of superposition was set earlier after the dielectric breakdown, as the plasma diameter is smaller. However, superimposition immediately after the discharge ignition leads to a higher tool wear ratio. Through experimentation and simulation, it was determined that the optimal time point to increase material removal while keeping tool wear low is approximately 12.5 μs when the rectangular pulse duration was 50 μs.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.