Irfan Ahmad Shah , Abhishek Ghosh Dastider , Prasenjit Basu , Santiram Chatterjee
{"title":"A thermoplastic clay constitutive model with temperature dependent evolution of stress anisotropy","authors":"Irfan Ahmad Shah , Abhishek Ghosh Dastider , Prasenjit Basu , Santiram Chatterjee","doi":"10.1016/j.gete.2024.100568","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a thermomechanical constitutive model that captures temperature dependent evolutions of preconsolidation stress and stress anisotropy in normally consolidated and lightly overconsolidated saturated clays. Following a non-associative flow rule, the model was formulated to account for the rate of evolution of stress anisotropy as a function of temperature. A temperature-dependent rotational hardening parameter was introduced and calibrated employing a simple optimization algorithm for four different clays. The developed model was further implemented in a finite element (FE) analysis software for use in boundary value problems. Success of such numerical implementation and predictive performance of the constitutive model was further verified through FE simulations of drained and undrained triaxial tests on saturated clays at reference and elevated temperature. FEA results obtained from these simulations agreed very well with test data reported in the literature.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"38 ","pages":"Article 100568"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000352","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a thermomechanical constitutive model that captures temperature dependent evolutions of preconsolidation stress and stress anisotropy in normally consolidated and lightly overconsolidated saturated clays. Following a non-associative flow rule, the model was formulated to account for the rate of evolution of stress anisotropy as a function of temperature. A temperature-dependent rotational hardening parameter was introduced and calibrated employing a simple optimization algorithm for four different clays. The developed model was further implemented in a finite element (FE) analysis software for use in boundary value problems. Success of such numerical implementation and predictive performance of the constitutive model was further verified through FE simulations of drained and undrained triaxial tests on saturated clays at reference and elevated temperature. FEA results obtained from these simulations agreed very well with test data reported in the literature.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.