{"title":"Effects of natural oral alternatives to parental iron supplementation on haematological and health-related blood parameters of organic piglets","authors":"","doi":"10.1016/j.animal.2024.101194","DOIUrl":null,"url":null,"abstract":"<div><p>The most common and efficient iron supply to prevent neonatal anaemia in piglets is the injection of iron dextran or gleptoferron. This treatment is problematic in organic farms because organic specifications strictly limit the use of chemically synthesised allopathic drugs. Based on the observation that piglets raised outdoors rarely develop anaemia, we hypothesised that piglets satisfy their iron needs by ingesting soil from their environment. Therefore, we compared the efficacy of a 100-mg intramuscular iron dextran injection (Iron, 8 litters, n = 98 piglets) at 4 days (<strong>d</strong>) of age (d4), to a daily <em>ad libitum</em> supply of dried soil (Soil, 8 litters, n = 101) or dried peat-like river silt (Peat, 8 litters, n = 102) from d4 to weaning (at 49 days of age, d49). Pigs were raised according to organic farming rules. Blood was collected on three males and three females per litter on d4, 20, 41, 50 and 69. BW was similar in the three groups on d4, 20, 41, 50 and 69 (<em>P</em> > 0.1). During the experiment, piglets were affected by a severe digestive <em>E. coli</em> episode but litter mortality rate between d4 and d69 did not differ between groups (<em>P</em> > 0.1). Blood haemoglobin concentration (<strong>Hb</strong>) was similar in all groups on d4, 50 and 69. However, on d20, Hb was higher in Peat and Iron groups than in the Soil group (<em>P</em> < 0.001), and on d41 and d50, Hb was higher in the Peat group than in Iron and Soil groups (<em>P</em> < 0.001). Mean red blood cell volume (<strong>RBCV</strong>) remained stable over time in the Peat group. In comparison, RBCV dropped in the Soil group on d20 and d41 (<em>P</em> < 0.001), and in the Iron group on d41 (<em>P</em> < 0.001). Soil and Iron group RBCV returned values similar to the Peat group by d69 (<em>P</em> > 0.1). In conclusion, soil supply in the pen was not sufficient to ensure a satisfactory iron intake in piglets, unlike peat-like river silt, which enable to reach haemoglobin concentrations above 80 mg/mL for over 90% of the piglets from d20 and, over 100% of piglets at weaning. The daily supply of the silt proved more efficient than the 100-mg iron injection beyond 20 days.</p></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1751731124001253/pdfft?md5=b9336a60bd90e5ad82a76af70c8ffd26&pid=1-s2.0-S1751731124001253-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751731124001253","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The most common and efficient iron supply to prevent neonatal anaemia in piglets is the injection of iron dextran or gleptoferron. This treatment is problematic in organic farms because organic specifications strictly limit the use of chemically synthesised allopathic drugs. Based on the observation that piglets raised outdoors rarely develop anaemia, we hypothesised that piglets satisfy their iron needs by ingesting soil from their environment. Therefore, we compared the efficacy of a 100-mg intramuscular iron dextran injection (Iron, 8 litters, n = 98 piglets) at 4 days (d) of age (d4), to a daily ad libitum supply of dried soil (Soil, 8 litters, n = 101) or dried peat-like river silt (Peat, 8 litters, n = 102) from d4 to weaning (at 49 days of age, d49). Pigs were raised according to organic farming rules. Blood was collected on three males and three females per litter on d4, 20, 41, 50 and 69. BW was similar in the three groups on d4, 20, 41, 50 and 69 (P > 0.1). During the experiment, piglets were affected by a severe digestive E. coli episode but litter mortality rate between d4 and d69 did not differ between groups (P > 0.1). Blood haemoglobin concentration (Hb) was similar in all groups on d4, 50 and 69. However, on d20, Hb was higher in Peat and Iron groups than in the Soil group (P < 0.001), and on d41 and d50, Hb was higher in the Peat group than in Iron and Soil groups (P < 0.001). Mean red blood cell volume (RBCV) remained stable over time in the Peat group. In comparison, RBCV dropped in the Soil group on d20 and d41 (P < 0.001), and in the Iron group on d41 (P < 0.001). Soil and Iron group RBCV returned values similar to the Peat group by d69 (P > 0.1). In conclusion, soil supply in the pen was not sufficient to ensure a satisfactory iron intake in piglets, unlike peat-like river silt, which enable to reach haemoglobin concentrations above 80 mg/mL for over 90% of the piglets from d20 and, over 100% of piglets at weaning. The daily supply of the silt proved more efficient than the 100-mg iron injection beyond 20 days.
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.