{"title":"Shadow Detection and Elimination for Robot and Machine Vision Applications","authors":"L. I. Abdul-Kreem, Hussam k. Abdul-Ameer","doi":"10.26583/sv.16.2.02","DOIUrl":null,"url":null,"abstract":"\n Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensities. In the third stage, the boundary of the target object is extracted, and in the fourth and fifth stages, respectively, the region of interest (ROI) is highlighted and reconstructed. Our model was tested and evaluated using realistic scenarios which include outdoor and indoor scenes. The results reflect the ability of our approach to detect and remove shadows and reconstruct a shadow free image with a small error of approximately 6%.\n","PeriodicalId":38328,"journal":{"name":"Scientific Visualization","volume":"64 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/sv.16.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensities. In the third stage, the boundary of the target object is extracted, and in the fourth and fifth stages, respectively, the region of interest (ROI) is highlighted and reconstructed. Our model was tested and evaluated using realistic scenarios which include outdoor and indoor scenes. The results reflect the ability of our approach to detect and remove shadows and reconstruct a shadow free image with a small error of approximately 6%.