Segmentation Study of Deep Shale Gas Horizontal Wells of the South Sichuan Shale Gas

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM SPE Journal Pub Date : 2024-05-01 DOI:10.2118/221451-pa
Yumin Li, Xiaoping Li, Yonggang Duan, M. Wei, Ke Meng
{"title":"Segmentation Study of Deep Shale Gas Horizontal Wells of the South Sichuan Shale Gas","authors":"Yumin Li, Xiaoping Li, Yonggang Duan, M. Wei, Ke Meng","doi":"10.2118/221451-pa","DOIUrl":null,"url":null,"abstract":"\n The low porosity and low permeability of shale gas reservoirs make fracturing technology an indispensable part of shale gas reservoir development. The initial stage of shale gas development is characterized by shallow direct wells, but with the advancement of drilling and completion technology in the development of unconventional oil and gas reservoirs, horizontal wells and fracturing technology have gradually become the key methods for the effective development of oil and gas reservoirs. “Geology-engineering integration” has gradually become a hot spot in the research of horizontal well fracturing. The factors affecting the development of shale gas reservoirs are subdivided into “geological sweet spot” and “engineering sweet spot” influencing factors. Geological sweet spot refers to the area where the reservoir is rich in hydrocarbons or organic matter; engineering sweet spot refers to the area with good fracturability in the later fracturing and reforming of the reservoir. The shale gas sweet spot area should have the characteristics of high gas content, high fracturable, and high efficiency. Comprehensively evaluating the physical properties and brittleness characteristics can provide certain guidance for shale gas horizontal well segmentation.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/221451-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

Abstract

The low porosity and low permeability of shale gas reservoirs make fracturing technology an indispensable part of shale gas reservoir development. The initial stage of shale gas development is characterized by shallow direct wells, but with the advancement of drilling and completion technology in the development of unconventional oil and gas reservoirs, horizontal wells and fracturing technology have gradually become the key methods for the effective development of oil and gas reservoirs. “Geology-engineering integration” has gradually become a hot spot in the research of horizontal well fracturing. The factors affecting the development of shale gas reservoirs are subdivided into “geological sweet spot” and “engineering sweet spot” influencing factors. Geological sweet spot refers to the area where the reservoir is rich in hydrocarbons or organic matter; engineering sweet spot refers to the area with good fracturability in the later fracturing and reforming of the reservoir. The shale gas sweet spot area should have the characteristics of high gas content, high fracturable, and high efficiency. Comprehensively evaluating the physical properties and brittleness characteristics can provide certain guidance for shale gas horizontal well segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
川南页岩气深层水平井细分研究
页岩气藏的低孔隙度和低渗透率使得压裂技术成为页岩气藏开发不可或缺的一部分。页岩气开发初期以浅层直井为主,但随着非常规油气藏开发中钻完井技术的进步,水平井和压裂技术逐渐成为油气藏有效开发的关键方法。"地质-工程一体化 "逐渐成为水平井压裂研究的热点。影响页岩气藏开发的因素细分为 "地质甜点 "和 "工程甜点 "影响因素。地质甜点是指储层中富含碳氢化合物或有机质的区域;工程甜点是指储层后期压裂改造中可压裂性好的区域。页岩气甜点区应具有高含气量、高可压裂性、高效率等特点。综合评价物性和脆性特征,可以为页岩气水平井分段提供一定的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
期刊最新文献
Experimental Study on the Effect of Rock Mechanical Properties and Fracture Morphology Features on Lost Circulation Spatiotemporal X-Ray Imaging of Neat and Viscosified CO2 in Displacement of Brine-Saturated Porous Media Novel Resin-Coated Sand Placement Design Guidelines for Controlling Proppant Flowback Post-Slickwater Hydraulic Fracturing Treatments Study on Plugging the Multiscale Water Channeling in Low-Permeability Heterogeneous Porous Media Based on the Growth of Bacteria Integrated Optimization of Hybrid Steam-Solvent Injection in Post-CHOPS Reservoirs with Consideration of Wormhole Networks and Foamy Oil Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1