Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid

IF 5.9 4区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Chinese Journal of Structural Chemistry Pub Date : 2024-08-01 DOI:10.1016/j.cjsc.2024.100346
{"title":"Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid","authors":"","doi":"10.1016/j.cjsc.2024.100346","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating emissions of greenhouse gases into atmosphere have precipitated a host of ecology and environmental concerns. Electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) is emerging as a sustainable solution for effectively addressing these issues. Leveraging the cost-effectiveness and eco-friendly attributes, Bi-based catalysts have been extensively studied with the purpose of enhancing activity and stability. This minireview majorly overviews the research advancements in Bi-based catalysts for CO<sub>2</sub> electrocatalysis towards formic acid/formate production. Initially, we offer a concise overview of the reaction pathways involved in electrochemical CO<sub>2</sub> reduction. Subsequently, we summarize the progress in various types of electrolysis cells and associated influencing factors. Specifically, the electronic structure modulation strategies of Bi-based catalysts including oxide-derived bismuth, bismuth-based chalcogenides, bimetallic and high-entropy compounds, etc. have been highlighted. Future research endeavors are poised to delve deeper into comprehending system dynamics during the reaction process to achieve exemplary stability high energy efficiency under industrial conditions.</p></div>","PeriodicalId":10151,"journal":{"name":"Chinese Journal of Structural Chemistry","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Structural Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124001806","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating emissions of greenhouse gases into atmosphere have precipitated a host of ecology and environmental concerns. Electrochemical reduction of CO2 (CO2RR) is emerging as a sustainable solution for effectively addressing these issues. Leveraging the cost-effectiveness and eco-friendly attributes, Bi-based catalysts have been extensively studied with the purpose of enhancing activity and stability. This minireview majorly overviews the research advancements in Bi-based catalysts for CO2 electrocatalysis towards formic acid/formate production. Initially, we offer a concise overview of the reaction pathways involved in electrochemical CO2 reduction. Subsequently, we summarize the progress in various types of electrolysis cells and associated influencing factors. Specifically, the electronic structure modulation strategies of Bi-based catalysts including oxide-derived bismuth, bismuth-based chalcogenides, bimetallic and high-entropy compounds, etc. have been highlighted. Future research endeavors are poised to delve deeper into comprehending system dynamics during the reaction process to achieve exemplary stability high energy efficiency under industrial conditions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于将二氧化碳高效还原为甲酸的生物基纳米材料的调整策略和电解槽设计
大气中温室气体排放量的不断增加引发了一系列生态和环境问题。二氧化碳的电化学还原(CO2RR)正在成为有效解决这些问题的可持续解决方案。利用成本效益和生态友好的特性,人们对 Bi 基催化剂进行了广泛研究,以提高其活性和稳定性。本微型综述主要概述了用于二氧化碳电催化甲酸/甲酸盐生产的生物基催化剂的研究进展。首先,我们简要概述了电化学二氧化碳还原反应的途径。随后,我们总结了各类电解槽的研究进展及相关影响因素。具体而言,我们重点介绍了铋基催化剂的电子结构调控策略,包括氧化物衍生铋、铋基卤化物、双金属和高熵化合物等。未来的研究工作将深入理解反应过程中的系统动力学,从而在工业条件下实现堪称典范的稳定性和高能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
22.70%
发文量
5334
审稿时长
13 days
期刊介绍: Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.
期刊最新文献
Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation Structural determination and exotic resistive behaviour of α-RuI3 under high-pressure Printable magnetoresistive sensors: A crucial step toward unconventional magnetoelectronics Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1