Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100 % CO selectivity

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-05-20 DOI:10.1016/j.cclet.2024.110031
{"title":"Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100 % CO selectivity","authors":"","doi":"10.1016/j.cclet.2024.110031","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-based materials with single-atom (SA) transition metals coordinated with nitrogen (M-N<sub>x</sub>) have attracted extensive attention due to their superior electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) performance. However, the uncontrolled recombination of metal atoms during the typical high-temperature synthesis process in M-N<sub>x</sub> causes deterioration of CO<sub>2</sub>RR activity. Herein, by using electrospinning, we propose a novel strategy for constructing a highly active and selective SA Fe-modified N-doped porous carbon fiber membrane catalyst (Fe-N-CF). This carbon membrane has an interconnected three-dimensional structure and a hierarchical porous structure, which can not only confine Fe to be single atom as active centers, but also provide a diffusion channel for CO<sub>2</sub> molecules. Relying on its special structure and stable mechanical properties, Fe-N-CF is directly used for CO<sub>2</sub>RR, which presents an excellent selectivity (CO Faradaic efficiency of 97 %) and stability. DFT calculations reveals that the synthesized Fe-N<sub>4</sub>-C can significantly reduce the energy barrier for intermediate COOH* formation and CO desorption. This work highlights the specific advantages of using electrospinning method to prepare the optimal SA catalysts.</p></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724005503","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-based materials with single-atom (SA) transition metals coordinated with nitrogen (M-Nx) have attracted extensive attention due to their superior electrochemical CO2 reduction reaction (CO2RR) performance. However, the uncontrolled recombination of metal atoms during the typical high-temperature synthesis process in M-Nx causes deterioration of CO2RR activity. Herein, by using electrospinning, we propose a novel strategy for constructing a highly active and selective SA Fe-modified N-doped porous carbon fiber membrane catalyst (Fe-N-CF). This carbon membrane has an interconnected three-dimensional structure and a hierarchical porous structure, which can not only confine Fe to be single atom as active centers, but also provide a diffusion channel for CO2 molecules. Relying on its special structure and stable mechanical properties, Fe-N-CF is directly used for CO2RR, which presents an excellent selectivity (CO Faradaic efficiency of 97 %) and stability. DFT calculations reveals that the synthesized Fe-N4-C can significantly reduce the energy barrier for intermediate COOH* formation and CO desorption. This work highlights the specific advantages of using electrospinning method to prepare the optimal SA catalysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于配位的铁单原子锚定掺氮碳纳米纤维膜的合成,用于二氧化碳电还原,具有近 100% 的二氧化碳选择性
含有与氮配位的单原子(SA)过渡金属(M-Nx)的碳基材料因其卓越的电化学二氧化碳还原反应(CO2RR)性能而受到广泛关注。然而,在 M-Nx 典型的高温合成过程中,金属原子的不可控重组会导致 CO2RR 活性下降。在此,我们提出了一种利用电纺丝技术构建高活性和高选择性 SA Fe 改性 N 掺杂多孔碳纤维膜催化剂(Fe-N-CF)的新策略。这种碳膜具有相互连接的三维结构和分层多孔结构,不仅能将铁限制为单个原子作为活性中心,还能为二氧化碳分子提供扩散通道。凭借其特殊的结构和稳定的力学性能,Fe-N-CF 被直接用于 CO2RR,具有极佳的选择性(CO 法拉效率达 97%)和稳定性。DFT 计算显示,合成的 Fe-N4-C 能显著降低中间 COOH* 形成和 CO 解吸的能障。这项工作凸显了使用电纺丝方法制备最佳 SA 催化剂的具体优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Corrigendum to ‘Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots’ [Chinese Chemical Letters 34 (2023) 107672] Corrigendum to ‘How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4 (dppy)4 Cl2 vs. Cu21 (dppy)10 with altered photoluminescence’ Chin. Chem. Lett. 2024, 35, 108340 Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries Corrigendum to “Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection” Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1