Numerical investigation of acoustic streaming vortices in cylindrical tube arrays

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Open Physics Pub Date : 2024-05-20 DOI:10.1515/phys-2024-0022
Yanfeng Yang, Chaolin Liu, Feng Xin
{"title":"Numerical investigation of acoustic streaming vortices in cylindrical tube arrays","authors":"Yanfeng Yang, Chaolin Liu, Feng Xin","doi":"10.1515/phys-2024-0022","DOIUrl":null,"url":null,"abstract":"Acoustic streaming has a significant effect on accelerating material mixing and flow field disturbance. To explore the characteristics of acoustic streaming in the cylindrical tube array field under the action of an acoustic wave, we derive the dimensionless acoustic streaming control equation and establish a numerical calculation model of acoustic streaming. The effects of acoustic incidence angle, acoustic Reynolds number, and Strouhal number on the acoustic streaming vortex flow field in the tube array were investigated. The numerical results show that with the change in acoustic parameters, the acoustic streaming in the tube array presents rich changes in the vortex flow field, and there are flow field phenomena such as shrinking, merging, tearing, and splitting of the vortex structure. Toward the walls of each tube, there is a strong acoustic streaming flow velocity. Besides, there is also a large streaming velocity on the interface of the adjacent acoustic streaming vortices. The inner streaming vortex structure in the acoustic boundary layer decreases with the increase in the acoustic Reynolds number, but the intensity of the inner streaming vortex and outer streaming vortex increases rapidly, and the disturbance effect of the flow field is enhanced. With the increase in the dimensionless acoustic frequency (or Strouhal number), although the structure and intensity of the inner streaming vortex decrease, the velocity gradient on the wall of the cylindrical tube increases, which is beneficial to destroy the flow boundary layer of the cylindrical tube wall and accelerate the instability of the wall flow field.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0022","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic streaming has a significant effect on accelerating material mixing and flow field disturbance. To explore the characteristics of acoustic streaming in the cylindrical tube array field under the action of an acoustic wave, we derive the dimensionless acoustic streaming control equation and establish a numerical calculation model of acoustic streaming. The effects of acoustic incidence angle, acoustic Reynolds number, and Strouhal number on the acoustic streaming vortex flow field in the tube array were investigated. The numerical results show that with the change in acoustic parameters, the acoustic streaming in the tube array presents rich changes in the vortex flow field, and there are flow field phenomena such as shrinking, merging, tearing, and splitting of the vortex structure. Toward the walls of each tube, there is a strong acoustic streaming flow velocity. Besides, there is also a large streaming velocity on the interface of the adjacent acoustic streaming vortices. The inner streaming vortex structure in the acoustic boundary layer decreases with the increase in the acoustic Reynolds number, but the intensity of the inner streaming vortex and outer streaming vortex increases rapidly, and the disturbance effect of the flow field is enhanced. With the increase in the dimensionless acoustic frequency (or Strouhal number), although the structure and intensity of the inner streaming vortex decrease, the velocity gradient on the wall of the cylindrical tube increases, which is beneficial to destroy the flow boundary layer of the cylindrical tube wall and accelerate the instability of the wall flow field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
圆柱管阵列中的声流漩涡数值研究
声流对加速物质混合和流场扰动有重要影响。为了探索声波作用下圆柱管阵场的声流特性,我们推导了无量纲声流控制方程,建立了声流数值计算模型。研究了声波入射角、声波雷诺数和斯特劳哈尔数对管阵中声流涡流场的影响。数值结果表明,随着声学参数的变化,管阵列中的声流涡旋流场呈现出丰富的变化,出现了涡旋结构收缩、合并、撕裂和分裂等流场现象。在每根管子的管壁上,都有很强的声波流流速。此外,在相邻声学流涡的界面上也存在较大的流速。随着声学雷诺数的增大,声学边界层中的内流涡结构减弱,但内流涡和外流涡的强度迅速增大,流场的扰动效应增强。随着无量纲声学频率(或斯特劳哈尔数)的增大,虽然内流涡的结构和强度减小,但圆柱管壁上的速度梯度增大,有利于破坏圆柱管壁的流动边界层,加速管壁流场的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Physics
Open Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.20
自引率
5.30%
发文量
82
审稿时长
18 weeks
期刊介绍: Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
期刊最新文献
Effectiveness of microwave ablation using two simultaneous antennas for liver malignancy treatment Analysis of a generalized proportional fractional stochastic differential equation incorporating Carathéodory's approximation and applications Improving heat transfer efficiency via optimization and sensitivity assessment in hybrid nanofluid flow with variable magnetism using the Yamada–Ota model Thermosolutal Marangoni convective flow of MHD tangent hyperbolic hybrid nanofluids with elastic deformation and heat source Study on dynamic and static tensile and puncture-resistant mechanical properties of impregnated STF multi-dimensional structure Kevlar fiber reinforced composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1