Mohammed T. Naser, Asawer A. Alwasiti, Reyadh S. Almukhtar, Mazin Shibeeb
{"title":"Influence of MgO and Surface Modified SiO2 Nanoparticles on Emulsion Stability, Rheology, Energy Consumption, and Mobility of East Baghdad Crude Oil","authors":"Mohammed T. Naser, Asawer A. Alwasiti, Reyadh S. Almukhtar, Mazin Shibeeb","doi":"10.1134/s0965544124020166","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Emulsion formation is a natural phenomenon since crude oil is constantly produced in conjunction with water from the reservoir. Water-in-oil (W/O) emulsions have been claimed to be the most prevalent form of emulsion seen in the oil and gas industry. It can exhibit high viscosity, leading to challenges during pipeline transportation as well as in oil sector. In this paper, the effect of modified silica dioxide (SiO<sub>2</sub>) and magnesium oxide (MgO) nanoparticles with different concentrations (1, 3, and 5 wt %) on the flow characteristics of east Baghdad crude oil emulsion have been investigated with water cut 35% v/v in a 0.0145 m inner diameter and 13 m length horizontal pipe. The effect of these nanoparticles on the emulsion stability, rheological, type, viscosity, and pressure drop as well as energy consumption was also studied. The rheology study found that best results were achieved by using modified nano silica at 1 and 3% addition, which resulted in significant reduction of viscosity with shear thinning behavior. Indeed, that the addition of modified nano silica decreased the pressure drop and the addition of 3% results in high stable emulsion and pump power consumption.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0965544124020166","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Emulsion formation is a natural phenomenon since crude oil is constantly produced in conjunction with water from the reservoir. Water-in-oil (W/O) emulsions have been claimed to be the most prevalent form of emulsion seen in the oil and gas industry. It can exhibit high viscosity, leading to challenges during pipeline transportation as well as in oil sector. In this paper, the effect of modified silica dioxide (SiO2) and magnesium oxide (MgO) nanoparticles with different concentrations (1, 3, and 5 wt %) on the flow characteristics of east Baghdad crude oil emulsion have been investigated with water cut 35% v/v in a 0.0145 m inner diameter and 13 m length horizontal pipe. The effect of these nanoparticles on the emulsion stability, rheological, type, viscosity, and pressure drop as well as energy consumption was also studied. The rheology study found that best results were achieved by using modified nano silica at 1 and 3% addition, which resulted in significant reduction of viscosity with shear thinning behavior. Indeed, that the addition of modified nano silica decreased the pressure drop and the addition of 3% results in high stable emulsion and pump power consumption.
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.