Electromagnetic Heating for the Separation of Water-Oil Emulsion

IF 1.3 4区 工程技术 Q3 CHEMISTRY, ORGANIC Petroleum Chemistry Pub Date : 2024-05-23 DOI:10.1134/s0965544124010195
Wasan S. Mowea, Raheek I. Ibrahim, Manal K. Oudah
{"title":"Electromagnetic Heating for the Separation of Water-Oil Emulsion","authors":"Wasan S. Mowea, Raheek I. Ibrahim, Manal K. Oudah","doi":"10.1134/s0965544124010195","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Water in oil emulsion is considered as a serious problem in petroleum sector, it impacts both production costs and environmental restrictions. The presence of emulsions in crude oil will lower the quality of the crude itself, increase operating costs due to emulsions separation, cause corrosion to the transport system, and contaminate catalyst used in the refining process. Emulsions formation in the pipeline is undesirable because emulsions will cause negative impact or quandaries to the field. The most common techniques for water—oil separation is using of an electric field with inorganic salts in a demulsification process. In the present work, a new green technique depends on electromagnetic waves of microwave irradiation was accomplished to achieve the separation without using any chemicals. The experimental part utilized a microwave reactor the emulsions were prepared in a concentration of water to oil was 40 vol % two operating variables were utilized as follow: power 200–1000 W and time 40–200 s. The experiments were designed by using central composite rotatable design method with two variables. A Statistical software was utilized to achieve the optimization process to obtain the optimum conditions. The results showed that the optimum separation was produced at 800–900 W power and 150–200 s of treatment time. It was proved that microwave technique is considered as cost effective and environmental friendly technique. And it shows the capability of microwave technology for enhance the demulsification of water-oil emulsion in a short time.</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"6 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0965544124010195","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Water in oil emulsion is considered as a serious problem in petroleum sector, it impacts both production costs and environmental restrictions. The presence of emulsions in crude oil will lower the quality of the crude itself, increase operating costs due to emulsions separation, cause corrosion to the transport system, and contaminate catalyst used in the refining process. Emulsions formation in the pipeline is undesirable because emulsions will cause negative impact or quandaries to the field. The most common techniques for water—oil separation is using of an electric field with inorganic salts in a demulsification process. In the present work, a new green technique depends on electromagnetic waves of microwave irradiation was accomplished to achieve the separation without using any chemicals. The experimental part utilized a microwave reactor the emulsions were prepared in a concentration of water to oil was 40 vol % two operating variables were utilized as follow: power 200–1000 W and time 40–200 s. The experiments were designed by using central composite rotatable design method with two variables. A Statistical software was utilized to achieve the optimization process to obtain the optimum conditions. The results showed that the optimum separation was produced at 800–900 W power and 150–200 s of treatment time. It was proved that microwave technique is considered as cost effective and environmental friendly technique. And it shows the capability of microwave technology for enhance the demulsification of water-oil emulsion in a short time.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电磁加热分离水油乳化液
摘要 石油乳化液中的水被认为是石油行业的一个严重问题,它既影响生产成本,又限制环境。原油中乳状液的存在会降低原油本身的质量,因乳状液分离而增加运营成本,对运输系统造成腐蚀,并污染炼油过程中使用的催化剂。在管道中形成乳状液是不可取的,因为乳状液会给油田带来负面影响或窘境。最常见的水油分离技术是在破乳过程中使用电场和无机盐。在本研究中,一种新的绿色技术依靠微波辐照电磁波来实现分离,而无需使用任何化学品。实验部分使用了一个微波反应器,乳化液的水油浓度为 40 Vol %,两个操作变量如下:功率 200-1000 W,时间 40-200 s。利用统计软件进行优化,以获得最佳条件。结果表明,在功率为 800-900 W、处理时间为 150-200 s 的条件下,分离效果最佳。事实证明,微波技术是一种经济有效且环保的技术。这表明微波技术能够在短时间内提高水油乳化液的破乳化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum Chemistry
Petroleum Chemistry 工程技术-工程:化工
CiteScore
2.50
自引率
21.40%
发文量
102
审稿时长
6-12 weeks
期刊介绍: Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas. Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.
期刊最新文献
Estimating the Petrophysical Properties Cutoff Values for Net Pay Determination: A Case Study of Khasib Formation, Southern Iraq Evaluation of Petrophysical Properties of Mishrif, Rumiala, Ahmadi, and Mauddud Formations in Nasiriya Oil Field—Middle of Iraq Design of Hybrid Porous Materials for Obtaining and Storage of Gas Hydrates Synthesis and Properties of a Low-Viscosity and Acid-Resistant Retarding Agent Fracture Pressure Prediction in Carbonate Reservoir Using Artificial Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1