Numerical investigation of CH4/H2/air micro-mixing combustion flow in a micro gas turbine combustor with different head-end structures

Ruibing Wu, Zhuoxiong Zeng, Hong Liu, Kaifang Guo
{"title":"Numerical investigation of CH4/H2/air micro-mixing combustion flow in a micro gas turbine combustor with different head-end structures","authors":"Ruibing Wu, Zhuoxiong Zeng, Hong Liu, Kaifang Guo","doi":"10.1177/09576509241254416","DOIUrl":null,"url":null,"abstract":"In order to investigate the premixed combustion characteristics of CH<jats:sub>4</jats:sub>/H<jats:sub>2</jats:sub>/air in a micro-mixing combustor, the effects of different micro-mixing head-ends (HE1, HE2, HE3) and hydrogen mixing ratios on the temperature distribution, heat transfer process, emission characteristic, flames shape are analyzed. The results show that compared with swirl head-end combustion, the micro-mixing combustion performance is better. Among the three head-ends, HE3 has the best combustion characteristics and stable flames. The temperature distribution in the high-temperature zone is uniform, and low-temperature zone is concentrated near the jet, which can suppress the flashback. The velocity and temperature gradient near the central axis of jet streams show a strong synergistic effect. The flames are plume shaped and flames stability is mainly influenced by the H<jats:sub>2</jats:sub> combustion process. Increasing the jet diameter, decreasing the jet spacing and increasing the hydrogen mixing ratio all contribute to the flames stability, but these three methods can stabilize the flames by affecting fluid Reynolds number, interaction between small flames and combustion rate, respectively. Moreover, small jet diameter and high hydrogen mixing ratio can reduce OTDF, which contributes to improve outlet temperature uniformity.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241254416","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to investigate the premixed combustion characteristics of CH4/H2/air in a micro-mixing combustor, the effects of different micro-mixing head-ends (HE1, HE2, HE3) and hydrogen mixing ratios on the temperature distribution, heat transfer process, emission characteristic, flames shape are analyzed. The results show that compared with swirl head-end combustion, the micro-mixing combustion performance is better. Among the three head-ends, HE3 has the best combustion characteristics and stable flames. The temperature distribution in the high-temperature zone is uniform, and low-temperature zone is concentrated near the jet, which can suppress the flashback. The velocity and temperature gradient near the central axis of jet streams show a strong synergistic effect. The flames are plume shaped and flames stability is mainly influenced by the H2 combustion process. Increasing the jet diameter, decreasing the jet spacing and increasing the hydrogen mixing ratio all contribute to the flames stability, but these three methods can stabilize the flames by affecting fluid Reynolds number, interaction between small flames and combustion rate, respectively. Moreover, small jet diameter and high hydrogen mixing ratio can reduce OTDF, which contributes to improve outlet temperature uniformity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不同顶端结构的微型燃气轮机燃烧器中 CH4/H2/air 微混合燃烧流的数值研究
为了研究 CH4/H2/air 在微混合燃烧器中的预混合燃烧特性,分析了不同微混合头端(HE1、HE2、HE3)和氢气混合比对温度分布、传热过程、排放特性、火焰形状的影响。结果表明,与漩涡头端燃烧相比,微混合燃烧性能更好。在三种头端中,HE3 的燃烧特性最好,火焰稳定。高温区温度分布均匀,低温区集中在射流附近,可抑制回火。射流中心轴附近的速度梯度和温度梯度具有很强的协同效应。火焰呈羽状,火焰稳定性主要受 H2 燃烧过程的影响。增大射流直径、减小射流间距和增大氢气混合比都有助于火焰的稳定,但这三种方法分别通过影响流体雷诺数、小火焰之间的相互作用和燃烧速率来稳定火焰。此外,小射流直径和高氢气混合比可以减少 OTDF,从而有助于改善出口温度的均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
期刊最新文献
Studies on fuels and engine attributes powered by bio-diesel and bio-oil derived from stone apple seed (Aegle marmelos) for bioenergy Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model Secondary air induced flow structures and their interplay with the temperature field in fixed bed combustors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1