Alkaline zinc-based flow battery: chemical stability, morphological evolution, and performance of zinc electrode with ionic liquid

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2024-05-22 DOI:10.1007/s11706-024-0681-0
Tianyong Mao, Jing Dai, Meiqing Xin, Deliang Zeng, Zhipeng Xie
{"title":"Alkaline zinc-based flow battery: chemical stability, morphological evolution, and performance of zinc electrode with ionic liquid","authors":"Tianyong Mao, Jing Dai, Meiqing Xin, Deliang Zeng, Zhipeng Xie","doi":"10.1007/s11706-024-0681-0","DOIUrl":null,"url":null,"abstract":"<p>Zinc-based flow battery is an energy storage technology with good application prospects because of its advantages of abundant raw materials, low cost, and environmental friendliness. The chemical stability of zinc electrodes exposed to electrolyte is a very important issue for zinc-based batteries. This paper reports on details of chemical stability of the zinc metal exposed to a series of solutions, as well as the relationship between the morphological evolution of zinc electrodes and their properties in an alkaline medium. Chemical corrosion of zinc electrodes by the electrolyte will change their surface morphology. However, we observed that chemical corrosion is not the main contributor to the evolution of zinc electrode surface morphology, but the main contributor is the Zn/Zn<sup>2+</sup> electrode process. The morphological evolution of zinc electrodes was controlled by using ionic liquids, 1-ethyl-3-methylimidazolium acetate (EMIA), and 1-propylsulfonic-3-methylimidazolium tosylate (PSMIT), and the electrode performance was recorded during the morphological evolution process. It was observed that the reversible change of zinc electrode morphology was accompanied by better electrode performance.</p>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11706-024-0681-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-based flow battery is an energy storage technology with good application prospects because of its advantages of abundant raw materials, low cost, and environmental friendliness. The chemical stability of zinc electrodes exposed to electrolyte is a very important issue for zinc-based batteries. This paper reports on details of chemical stability of the zinc metal exposed to a series of solutions, as well as the relationship between the morphological evolution of zinc electrodes and their properties in an alkaline medium. Chemical corrosion of zinc electrodes by the electrolyte will change their surface morphology. However, we observed that chemical corrosion is not the main contributor to the evolution of zinc electrode surface morphology, but the main contributor is the Zn/Zn2+ electrode process. The morphological evolution of zinc electrodes was controlled by using ionic liquids, 1-ethyl-3-methylimidazolium acetate (EMIA), and 1-propylsulfonic-3-methylimidazolium tosylate (PSMIT), and the electrode performance was recorded during the morphological evolution process. It was observed that the reversible change of zinc electrode morphology was accompanied by better electrode performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碱性锌基液流电池:锌电极与离子液体的化学稳定性、形态演变和性能
锌基液流电池具有原料丰富、成本低廉、环境友好等优点,是一种具有良好应用前景的储能技术。锌电极在电解液中的化学稳定性是锌基电池的一个重要问题。本文详细介绍了锌金属在一系列溶液中的化学稳定性,以及锌电极在碱性介质中的形态演变与其性能之间的关系。电解液对锌电极的化学腐蚀会改变其表面形态。然而,我们观察到化学腐蚀并不是锌电极表面形态演变的主要因素,主要因素是 Zn/Zn2+ 电极过程。我们使用离子液体、1-乙基-3-甲基咪唑醋酸盐(EMIA)和 1-丙基磺酸-3-甲基咪唑对甲苯磺酸盐(PSMIT)控制锌电极的形态演变,并记录了形态演变过程中的电极性能。结果表明,锌电极形态的可逆变化伴随着更好的电极性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing Adsorption and photocatalytic degradation performances of methyl orange-imprinted polysiloxane particles using TiO2 as matrix Development of high-flux reverse osmosis membranes with MIL-101(Cr)/Fe3O4 interlayer Empowering progress: unraveling the promising capabilities of Cu2S:ZnS:NiS2 trimetal sulphide thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1