{"title":"Plasma Pretreatment System for the Reduction of By-Product Particles in Semiconductor Manufacturing","authors":"Se Yun Jo;Minsuk Choi;Sang Jeen Hong","doi":"10.1109/TSM.2024.3402214","DOIUrl":null,"url":null,"abstract":"Titanium tetrachloride (TiCl4) is a well-known source of titanium (Ti) for the formation of titanium nitride (TiN) barrier material in the semiconductor interconnection process; however, the reaction of by-products with airborne molecules can cause unexpected pump trips and equipment breakdown from the by-product powder build-up. Plasma scrubbers are used to decompose by-products, but hydrogen chloride (HCl) and nitrogen oxides are produced during and after the process. The process mechanisms change when the temperature and applied power of the heat source change. In this paper, we study the influence of the reactor temperature and applied power to the heat source on the decomposition capacity of TiCl4 in a plasma pretreatment system (PPS). We examine the effect of the temperature and heat source power to understand the reaction mechanisms for the composition and decomposition of gaseous species with chemical reactions through simultaneous methods. We analyzed the system with computational fluid dynamics (CFD) and chemical kinetic simulation to investigate the changes of the system mechanism. Subsequently, we achieved results for the correlation between the temperature of the reactor, power applied to the heat source, composition and decomposition of species, and chemical reaction mechanisms.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 3","pages":"381-393"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10534344/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium tetrachloride (TiCl4) is a well-known source of titanium (Ti) for the formation of titanium nitride (TiN) barrier material in the semiconductor interconnection process; however, the reaction of by-products with airborne molecules can cause unexpected pump trips and equipment breakdown from the by-product powder build-up. Plasma scrubbers are used to decompose by-products, but hydrogen chloride (HCl) and nitrogen oxides are produced during and after the process. The process mechanisms change when the temperature and applied power of the heat source change. In this paper, we study the influence of the reactor temperature and applied power to the heat source on the decomposition capacity of TiCl4 in a plasma pretreatment system (PPS). We examine the effect of the temperature and heat source power to understand the reaction mechanisms for the composition and decomposition of gaseous species with chemical reactions through simultaneous methods. We analyzed the system with computational fluid dynamics (CFD) and chemical kinetic simulation to investigate the changes of the system mechanism. Subsequently, we achieved results for the correlation between the temperature of the reactor, power applied to the heat source, composition and decomposition of species, and chemical reaction mechanisms.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.