Convergence analysis of kernel learning FBSDE filter

Yunzheng Lyu, Feng Bao
{"title":"Convergence analysis of kernel learning FBSDE filter","authors":"Yunzheng Lyu, Feng Bao","doi":"arxiv-2405.13390","DOIUrl":null,"url":null,"abstract":"Kernel learning forward backward SDE filter is an iterative and adaptive\nmeshfree approach to solve the nonlinear filtering problem. It builds from\nforward backward SDE for Fokker-Planker equation, which defines evolving\ndensity for the state variable, and employs KDE to approximate density. This\nalgorithm has shown more superior performance than mainstream particle filter\nmethod, in both convergence speed and efficiency of solving high dimension\nproblems. However, this method has only been shown to converge empirically. In this\npaper, we present a rigorous analysis to demonstrate its local and global\nconvergence, and provide theoretical support for its empirical results.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.13390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kernel learning forward backward SDE filter is an iterative and adaptive meshfree approach to solve the nonlinear filtering problem. It builds from forward backward SDE for Fokker-Planker equation, which defines evolving density for the state variable, and employs KDE to approximate density. This algorithm has shown more superior performance than mainstream particle filter method, in both convergence speed and efficiency of solving high dimension problems. However, this method has only been shown to converge empirically. In this paper, we present a rigorous analysis to demonstrate its local and global convergence, and provide theoretical support for its empirical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核学习 FBSDE 滤波器的收敛性分析
核学习前向后向 SDE 滤波器是一种解决非线性滤波问题的迭代和自适应无网格方法。它以福克-普朗克方程的前向后向 SDE 为基础,定义了状态变量的演化密度,并利用 KDE 逼近密度。与主流粒子滤波方法相比,该算法在收敛速度和解决高维度问题的效率方面都表现出更优越的性能。然而,这种方法只在经验上证明了收敛性。在本文中,我们将通过严格的分析来证明其局部和全局收敛性,并为其经验结果提供理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A market resilient data-driven approach to option pricing COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning Ergodicity and Law-of-large numbers for the Volterra Cox-Ingersoll-Ross process Irreversible investment under weighted discounting: effects of decreasing impatience Long-term decomposition of robust pricing kernels under G-expectation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1