Automated Loss function Search for Class-imbalanced Node Classification

Xinyu Guo, Kai Wu, Xiaoyu Zhang, Jing Liu
{"title":"Automated Loss function Search for Class-imbalanced Node Classification","authors":"Xinyu Guo, Kai Wu, Xiaoyu Zhang, Jing Liu","doi":"arxiv-2405.14133","DOIUrl":null,"url":null,"abstract":"Class-imbalanced node classification tasks are prevalent in real-world\nscenarios. Due to the uneven distribution of nodes across different classes,\nlearning high-quality node representations remains a challenging endeavor. The\nengineering of loss functions has shown promising potential in addressing this\nissue. It involves the meticulous design of loss functions, utilizing\ninformation about the quantities of nodes in different categories and the\nnetwork's topology to learn unbiased node representations. However, the design\nof these loss functions heavily relies on human expert knowledge and exhibits\nlimited adaptability to specific target tasks. In this paper, we introduce a\nhigh-performance, flexible, and generalizable automated loss function search\nframework to tackle this challenge. Across 15 combinations of graph neural\nnetworks and datasets, our framework achieves a significant improvement in\nperformance compared to state-of-the-art methods. Additionally, we observe that\nhomophily in graph-structured data significantly contributes to the\ntransferability of the proposed framework.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.14133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Class-imbalanced node classification tasks are prevalent in real-world scenarios. Due to the uneven distribution of nodes across different classes, learning high-quality node representations remains a challenging endeavor. The engineering of loss functions has shown promising potential in addressing this issue. It involves the meticulous design of loss functions, utilizing information about the quantities of nodes in different categories and the network's topology to learn unbiased node representations. However, the design of these loss functions heavily relies on human expert knowledge and exhibits limited adaptability to specific target tasks. In this paper, we introduce a high-performance, flexible, and generalizable automated loss function search framework to tackle this challenge. Across 15 combinations of graph neural networks and datasets, our framework achieves a significant improvement in performance compared to state-of-the-art methods. Additionally, we observe that homophily in graph-structured data significantly contributes to the transferability of the proposed framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于类别不平衡节点分类的自动损失函数搜索
类不平衡节点分类任务在现实世界场景中非常普遍。由于节点在不同类别中的分布不均衡,学习高质量的节点表示仍然是一项具有挑战性的工作。损失函数工程在解决这一问题方面显示出了巨大的潜力。它涉及损失函数的精心设计,利用不同类别节点的数量信息和网络拓扑结构来学习无偏的节点表示。然而,这些损失函数的设计严重依赖于人类专家的知识,对特定目标任务的适应性有限。在本文中,我们引入了一个高性能、灵活且可通用的自动损失函数搜索框架来应对这一挑战。在图神经网络和数据集的 15 种组合中,与最先进的方法相比,我们的框架取得了显著的性能提升。此外,我们还观察到,图结构数据的同源性大大提高了所提框架的可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1