Aaron Asael Smith, Rui Li, Lulu Xu, Zion Tsz Ho Tse
{"title":"A Narrative Review of In-Textile Sensors in Human Health Applications","authors":"Aaron Asael Smith, Rui Li, Lulu Xu, Zion Tsz Ho Tse","doi":"10.1002/admt.202302141","DOIUrl":null,"url":null,"abstract":"<p>Sensors have become more versatile and sophisticated in recent years to fulfill the increasing demands for human health applications. Physiological information such as electrocardiogram, pulse rate, and respiration are essential indications of personal health, often collected as vitals, which are typically collected from medical-grade electrocardiogram (ECG) machines. In-textile sensors are a fast-growing sub-category of wearable sensors embedded in smart textiles to acquire physiological information and movement index and provide harmful chemical warnings without compromising the comfortable nature of clothing. Recent literature has shown that integrating new materials has greatly improved the stability, specificity, and selectivity of in-textile sensors. For example, polyvinylidene fluoride nanofiber produced a highly stretchable sensor to measure ECG readings during movement without losing data quality. This review discusses a group of nanomaterial-based in-textile sensors for consumer use in the home, workplace, and healthcare environments. This review will focus on exploring and analyzing the latest developments in these nanomaterial-based e-textiles due to their ability to be more easily integrated for daily use and their great potential for medical applications. Future work will be necessary to incorporate recycled materials, improve the method of powering these sensors, and ultimately refine the designs to be appropriate for more sustainable use.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202302141","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302141","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sensors have become more versatile and sophisticated in recent years to fulfill the increasing demands for human health applications. Physiological information such as electrocardiogram, pulse rate, and respiration are essential indications of personal health, often collected as vitals, which are typically collected from medical-grade electrocardiogram (ECG) machines. In-textile sensors are a fast-growing sub-category of wearable sensors embedded in smart textiles to acquire physiological information and movement index and provide harmful chemical warnings without compromising the comfortable nature of clothing. Recent literature has shown that integrating new materials has greatly improved the stability, specificity, and selectivity of in-textile sensors. For example, polyvinylidene fluoride nanofiber produced a highly stretchable sensor to measure ECG readings during movement without losing data quality. This review discusses a group of nanomaterial-based in-textile sensors for consumer use in the home, workplace, and healthcare environments. This review will focus on exploring and analyzing the latest developments in these nanomaterial-based e-textiles due to their ability to be more easily integrated for daily use and their great potential for medical applications. Future work will be necessary to incorporate recycled materials, improve the method of powering these sensors, and ultimately refine the designs to be appropriate for more sustainable use.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.