{"title":"Improving critical thinking skills of preservice chemistry teachers through integrated biochemistry course","authors":"Andi Wahyudi, Yusinta Dwi Ariyani","doi":"10.1002/bmb.21840","DOIUrl":null,"url":null,"abstract":"<p>Many studies have reported various interventions to increase critical thinking, but very few studies have examined the impact of learning in classrooms and laboratories. This study aimed to find a learning pattern (practice to theory or theory to practice) in improving students' critical thinking skills (CTs). Pre and posttest nonequivalent group design was employed in this study. Eighty preservice chemistry teachers divided 40 students in experimental class 1 and 40 in experimental class 2. A test of enzyme-CTs was developed to measure student CTs before and after the intervention. The result showed that integrated biochemistry courses could improve students' CTs. An independent sample <i>t</i>-test was employed, and the result showed a significant difference N-gain students' CTs between experimental classes 1 and 2 (<i>p</i> = 0.018). It indicates that the pattern of developing CTs from practice to theory is better than theory to practice. The research result can be taken into consideration for placing biochemistry theory and biochemistry practicum in the same semester for the chemistry or chemistry education curriculum. Students can find concepts independently in practical activities and develop them in theoretical activities. Further research should analyze the discriminant factors that differentiate between students in experimental classes 1 and 2.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"52 5","pages":"540-548"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21840","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many studies have reported various interventions to increase critical thinking, but very few studies have examined the impact of learning in classrooms and laboratories. This study aimed to find a learning pattern (practice to theory or theory to practice) in improving students' critical thinking skills (CTs). Pre and posttest nonequivalent group design was employed in this study. Eighty preservice chemistry teachers divided 40 students in experimental class 1 and 40 in experimental class 2. A test of enzyme-CTs was developed to measure student CTs before and after the intervention. The result showed that integrated biochemistry courses could improve students' CTs. An independent sample t-test was employed, and the result showed a significant difference N-gain students' CTs between experimental classes 1 and 2 (p = 0.018). It indicates that the pattern of developing CTs from practice to theory is better than theory to practice. The research result can be taken into consideration for placing biochemistry theory and biochemistry practicum in the same semester for the chemistry or chemistry education curriculum. Students can find concepts independently in practical activities and develop them in theoretical activities. Further research should analyze the discriminant factors that differentiate between students in experimental classes 1 and 2.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.