Hands-Free Haptic Navigation Devices for Actual Walking.

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2024-05-27 DOI:10.1109/TOH.2024.3405551
Astrid M L Kappers, Raymond J Holt, Tessa J W Junggeburth, Max Fa Si Oen, Bart J T van de Wetering, Myrthe A Plaisier
{"title":"Hands-Free Haptic Navigation Devices for Actual Walking.","authors":"Astrid M L Kappers, Raymond J Holt, Tessa J W Junggeburth, Max Fa Si Oen, Bart J T van de Wetering, Myrthe A Plaisier","doi":"10.1109/TOH.2024.3405551","DOIUrl":null,"url":null,"abstract":"<p><p>In this survey, we give an overview of hands-free haptic devices specifically designed for navigation guidance while walking. We present and discuss the devices by body part, namely devices for the arm, foot and leg, back, belly and shoulders, waist and finally the head. Although the majority of the experimental tests were successful in terms of reaching the target while being guided by the device, the experimental requirements were wide-ranging. The distances to be covered ranged from just a few meters to more than a kilometer, and while some of the devices worked autonomously, others required the experimenter to act as Wizard of Oz. To compare the usefulness and potential of these devices, we created a table in which we rated several relevant aspects such as autonomy, conspicuity and compactness. Major conclusions are that outdoor devices have the highest technology readiness level, because these allow autonomous navigation through GPS, and that the most compact devices still require the action of an experimenter. Unfortunately, none of the hands-free devices are at a level of readiness where they could be useful to people with visual impairments. The most important factor that should be improved is localization accuracy, which should be high and available at all times.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3405551","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this survey, we give an overview of hands-free haptic devices specifically designed for navigation guidance while walking. We present and discuss the devices by body part, namely devices for the arm, foot and leg, back, belly and shoulders, waist and finally the head. Although the majority of the experimental tests were successful in terms of reaching the target while being guided by the device, the experimental requirements were wide-ranging. The distances to be covered ranged from just a few meters to more than a kilometer, and while some of the devices worked autonomously, others required the experimenter to act as Wizard of Oz. To compare the usefulness and potential of these devices, we created a table in which we rated several relevant aspects such as autonomy, conspicuity and compactness. Major conclusions are that outdoor devices have the highest technology readiness level, because these allow autonomous navigation through GPS, and that the most compact devices still require the action of an experimenter. Unfortunately, none of the hands-free devices are at a level of readiness where they could be useful to people with visual impairments. The most important factor that should be improved is localization accuracy, which should be high and available at all times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于实际行走的免提触觉导航设备
在这份调查报告中,我们概述了专为步行导航而设计的免提触觉设备。我们按身体部位介绍和讨论了这些设备,即用于手臂、脚和腿、背部、腹部和肩膀、腰部以及头部的设备。虽然大多数实验测试都能在设备的引导下成功到达目标,但实验要求的范围很广。需要覆盖的距离从几米到一公里多不等,有些装置可以自主工作,有些则需要实验者充当绿野仙踪。为了比较这些设备的实用性和潜力,我们制作了一个表格,对自主性、显眼性和紧凑性等几个相关方面进行了评分。主要结论是,户外设备的技术就绪程度最高,因为这些设备可以通过全球定位系统自主导航,而最小巧的设备仍然需要实验者的操作。遗憾的是,所有免提设备都没有达到对视障人士有用的就绪水平。需要改进的最重要因素是定位精度,定位精度应该很高,并且随时可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
Investigating the Kappa Effect Elicited Through Concurrent Visual and Tactile Stimulation. Two rapid alternatives compared to the staircase method for the estimation of the vibrotactile perception threshold. Multichannel Vibrotactile Glove: Validation of a new device designed to sense vibrations. Passive Realizations of Series Elastic Actuation: Effects of Plant and Controller Dynamics on Haptic Rendering Performance. VT-SGN:Spiking Graph Neural Network for Neuromorphic Visual-Tactile Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1