Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation.

IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BioTech Pub Date : 2024-04-25 DOI:10.3390/biotech13020011
Koji Umezawa, Rena Ikeda, Taiichi Sakamoto, Yuya Enomoto, Yuma Nihashi, Sayaka Shinji, Takeshi Shimosato, Hiroshi Kagami, Tomohide Takaya
{"title":"Development of the 12-Base Short Dimeric Myogenetic Oligodeoxynucleotide That Induces Myogenic Differentiation.","authors":"Koji Umezawa, Rena Ikeda, Taiichi Sakamoto, Yuya Enomoto, Yuma Nihashi, Sayaka Shinji, Takeshi Shimosato, Hiroshi Kagami, Tomohide Takaya","doi":"10.3390/biotech13020011","DOIUrl":null,"url":null,"abstract":"<p><p>A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech13020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A myogenetic oligodeoxynucleotide (myoDN), iSN04 (5'-AGA TTA GGG TGA GGG TGA-3'), is a single-stranded 18-base telomeric DNA that serves as an anti-nucleolin aptamer and induces myogenic differentiation, which is expected to be a nucleic acid drug for the prevention of disease-associated muscle wasting. To improve the drug efficacy and synthesis cost of myoDN, shortening the sequence while maintaining its structure-based function is a major challenge. Here, we report the novel 12-base non-telomeric myoDN, iMyo01 (5'-TTG GGT GGG GAA-3'), which has comparable myogenic activity to iSN04. iMyo01 as well as iSN04 promoted myotube formation of primary-cultured human myoblasts with upregulation of myogenic gene expression. Both iMyo01 and iSN04 interacted with nucleolin, but iMyo01 did not bind to berberine, the isoquinoline alkaloid that stabilizes iSN04. Nuclear magnetic resonance revealed that iMyo01 forms a G-quadruplex structure despite its short sequence. Native polyacrylamide gel electrophoresis and a computational molecular dynamics simulation indicated that iMyo01 forms a homodimer to generate a G-quadruplex. These results provide new insights into the aptamer truncation technology that preserves aptamer conformation and bioactivity for the development of efficient nucleic acid drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发可诱导肌分化的 12 碱基短二聚体肌遗传寡核苷酸
肌原性寡脱氧核苷酸(myoDN)iSN04(5'-AGA TTA GGG TGA GGG TGA-3')是一种单链18碱基端粒DNA,可作为抗核蛋白适配体并诱导肌原性分化,有望成为预防疾病相关肌肉萎缩的核酸药物。为了提高药效并降低 myoDN 的合成成本,在保持其结构功能的同时缩短序列是一大挑战。iMyo01 和 iSN04 都能促进原代培养人肌母细胞肌管的形成,并上调肌生成基因的表达。iMyo01和iSN04都能与核仁蛋白相互作用,但iMyo01不能与稳定iSN04的异喹啉生物碱小檗碱结合。核磁共振显示,尽管 iMyo01 的序列很短,但它能形成 G 型四联结构。原生聚丙烯酰胺凝胶电泳和计算分子动力学模拟表明,iMyo01 形成同源二聚体,生成 G 型四联体。这些结果为保留灵媒构象和生物活性以开发高效核酸药物的灵媒截短技术提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioTech
BioTech Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.70
自引率
0.00%
发文量
51
审稿时长
11 weeks
期刊最新文献
The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites. High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices. Honey Bioactive Molecules: There Is a World Beyond the Sugars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1