Do as Sonographers Think: Contrast-Enhanced Ultrasound for Thyroid Nodules Diagnosis via Microvascular Infiltrative Awareness

Fang Chen;Haojie Han;Peng Wan;Lingyu Chen;Wentao Kong;Hongen Liao;Baojie Wen;Chunrui Liu;Daoqiang Zhang
{"title":"Do as Sonographers Think: Contrast-Enhanced Ultrasound for Thyroid Nodules Diagnosis via Microvascular Infiltrative Awareness","authors":"Fang Chen;Haojie Han;Peng Wan;Lingyu Chen;Wentao Kong;Hongen Liao;Baojie Wen;Chunrui Liu;Daoqiang Zhang","doi":"10.1109/TMI.2024.3405621","DOIUrl":null,"url":null,"abstract":"Dynamic contrast-enhanced ultrasound (CEUS) imaging can reflect the microvascular distribution and blood flow perfusion, thereby holding clinical significance in distinguishing between malignant and benign thyroid nodules. Notably, CEUS offers a meticulous visualization of the microvascular distribution surrounding the nodule, leading to an apparent increase in tumor size compared to gray-scale ultrasound (US). In the dual-image obtained, the lesion size enlarged from gray-scale US to CEUS, as the microvascular appeared to be continuously infiltrating the surrounding tissue. Although the infiltrative dilatation of microvasculature remains ambiguous, sonographers believe it may promote the diagnosis of thyroid nodules. We propose a deep learning model designed to emulate the diagnostic reasoning process employed by sonographers. This model integrates the observation of microvascular infiltration on dynamic CEUS, leveraging the additional insights provided by gray-scale US for enhanced diagnostic support. Specifically, temporal projection attention is implemented on time dimension of dynamic CEUS to represent the microvascular perfusion. Additionally, we employ a group of confidence maps with flexible Sigmoid Alpha Functions to aware and describe the infiltrative dilatation process. Moreover, a self-adaptive integration mechanism is introduced to dynamically integrate the assisted gray-scale US and the confidence maps of CEUS for individual patients, ensuring a trustworthy diagnosis of thyroid nodules. In this retrospective study, we collected a thyroid nodule dataset of 282 CEUS videos. The method achieves a superior diagnostic accuracy and sensitivity of 89.52% and 94.75%, respectively. These results suggest that imitating the diagnostic thinking of sonographers, encompassing dynamic microvascular perfusion and infiltrative expansion, proves beneficial for CEUS-based thyroid nodule diagnosis.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"43 11","pages":"3881-3894"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10539372/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic contrast-enhanced ultrasound (CEUS) imaging can reflect the microvascular distribution and blood flow perfusion, thereby holding clinical significance in distinguishing between malignant and benign thyroid nodules. Notably, CEUS offers a meticulous visualization of the microvascular distribution surrounding the nodule, leading to an apparent increase in tumor size compared to gray-scale ultrasound (US). In the dual-image obtained, the lesion size enlarged from gray-scale US to CEUS, as the microvascular appeared to be continuously infiltrating the surrounding tissue. Although the infiltrative dilatation of microvasculature remains ambiguous, sonographers believe it may promote the diagnosis of thyroid nodules. We propose a deep learning model designed to emulate the diagnostic reasoning process employed by sonographers. This model integrates the observation of microvascular infiltration on dynamic CEUS, leveraging the additional insights provided by gray-scale US for enhanced diagnostic support. Specifically, temporal projection attention is implemented on time dimension of dynamic CEUS to represent the microvascular perfusion. Additionally, we employ a group of confidence maps with flexible Sigmoid Alpha Functions to aware and describe the infiltrative dilatation process. Moreover, a self-adaptive integration mechanism is introduced to dynamically integrate the assisted gray-scale US and the confidence maps of CEUS for individual patients, ensuring a trustworthy diagnosis of thyroid nodules. In this retrospective study, we collected a thyroid nodule dataset of 282 CEUS videos. The method achieves a superior diagnostic accuracy and sensitivity of 89.52% and 94.75%, respectively. These results suggest that imitating the diagnostic thinking of sonographers, encompassing dynamic microvascular perfusion and infiltrative expansion, proves beneficial for CEUS-based thyroid nodule diagnosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
按照超声技师的想法去做:通过微血管浸润意识进行甲状腺结节诊断的对比增强超声检查
动态对比增强超声(CEUS)成像可反映微血管分布和血流灌注情况,因此在区分恶性和良性甲状腺结节方面具有重要的临床意义。值得注意的是,与灰阶超声(US)相比,CEUS能细致地观察到结节周围的微血管分布,从而使肿瘤体积明显增大。在获得的双图像中,从灰阶 US 到 CEUS,病灶的大小都增大了,因为微血管似乎在不断向周围组织浸润。虽然微血管的浸润性扩张仍不明确,但超声技师认为这可能有助于甲状腺结节的诊断。我们提出了一种深度学习模型,旨在模仿超声技师的诊断推理过程。该模型整合了动态 CEUS 上的微血管浸润观察,利用灰度 US 提供的额外洞察力增强诊断支持。具体来说,我们在动态 CEUS 的时间维度上实施了时间投影关注,以表示微血管灌注。此外,我们还采用了一组具有灵活的西格蒙德阿尔法函数的置信度图来感知和描述浸润性扩张过程。此外,我们还引入了一种自适应整合机制,以动态整合辅助灰阶 US 和 CEUS 的置信度图,从而确保甲状腺结节诊断的可信度。在这项回顾性研究中,我们收集了 282 个 CEUS 视频的甲状腺结节数据集。该方法的诊断准确率和灵敏度分别达到 89.52% 和 93.75%。这些结果表明,模仿超声技师的诊断思维(包括动态微血管灌注和浸润性扩张)有利于基于 CEUS 的甲状腺结节诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Table of Contents Table of Contents Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1