Pub Date : 2024-11-06DOI: 10.1109/TMI.2024.3492313
Rafic Nader, Florent Autrusseau, Vincent L'Allinec, Romain Bourcier
We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree, including the cerebral arteries, bifurcations and intracranial aneurysms. This model intends to provide a substantial dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms. The cerebral aneurysms most often occur on a particular structure of the vascular tree named the Circle of Willis. Various studies have been conducted to detect and monitor the aneurysms and those based on Deep Learning achieve the best performance. Specifically, in this work, we propose a full synthetic 3D model able to mimic the brain vasculature as acquired by Magnetic Resonance Angiography, Time Of Flight principle. Among the various MRI modalities, this latter allows for a good rendering of the blood vessels and is non-invasive. Our model has been designed to simultaneously mimic the arteries' geometry, the aneurysm shape, and the background noise. The vascular tree geometry is modeled thanks to an interpolation with 3D Spline functions, and the statistical properties of the background noise is collected from angiography acquisitions and reproduced within the model. In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, finally, we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.
{"title":"Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario.","authors":"Rafic Nader, Florent Autrusseau, Vincent L'Allinec, Romain Bourcier","doi":"10.1109/TMI.2024.3492313","DOIUrl":"https://doi.org/10.1109/TMI.2024.3492313","url":null,"abstract":"<p><p>We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree, including the cerebral arteries, bifurcations and intracranial aneurysms. This model intends to provide a substantial dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms. The cerebral aneurysms most often occur on a particular structure of the vascular tree named the Circle of Willis. Various studies have been conducted to detect and monitor the aneurysms and those based on Deep Learning achieve the best performance. Specifically, in this work, we propose a full synthetic 3D model able to mimic the brain vasculature as acquired by Magnetic Resonance Angiography, Time Of Flight principle. Among the various MRI modalities, this latter allows for a good rendering of the blood vessels and is non-invasive. Our model has been designed to simultaneously mimic the arteries' geometry, the aneurysm shape, and the background noise. The vascular tree geometry is modeled thanks to an interpolation with 3D Spline functions, and the statistical properties of the background noise is collected from angiography acquisitions and reproduced within the model. In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, finally, we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1109/TMI.2024.3485612
Yiyao Liu, Jinyao Li, Cheng Zhao, Yongtao Zhang, Qian Chen, Jing Qin, Lei Dong, Tianfu Wang, Wei Jiang, Baiying Lei
Automatic and accurate classification of breast cancer in multimodal ultrasound images is crucial to improve patients' diagnosis and treatment effect and save medical resources. Methodologically, the fusion of multimodal ultrasound images often encounters challenges such as misalignment, limited utilization of complementary information, poor interpretability in feature fusion, and imbalances in sample categories. To solve these problems, we propose a feature alignment mutual attention fusion method (FAMF-Net), which consists of a region awareness alignment (RAA) block, a mutual attention fusion (MAF) block, and a reinforcement learning-based dynamic optimization strategy(RDO). Specifically, RAA achieves region awareness through class activation mapping and performs translation transformation to achieve feature alignment. When MAF utilizes a mutual attention mechanism for feature interaction fusion, it mines edge and color features separately in B-mode and shear wave elastography images, enhancing the complementarity of features and improving interpretability. Finally, RDO uses the distribution of samples and prediction probabilities during training as the state of reinforcement learning to dynamically optimize the weights of the loss function, thereby solving the problem of class imbalance. The experimental results based on our clinically obtained dataset demonstrate the effectiveness of the proposed method. Our code will be available at: https://github.com/Magnety/Multi_modal_Image.
自动、准确地对多模态超声图像中的乳腺癌进行分类,对于提高患者的诊断和治疗效果以及节约医疗资源至关重要。在方法学上,多模态超声图像的融合经常会遇到一些挑战,如对齐错误、互补信息利用有限、特征融合的可解释性差、样本类别不平衡等。为了解决这些问题,我们提出了一种特征配准相互关注融合方法(FAMF-Net),它由区域感知配准(RAA)模块、相互关注融合(MAF)模块和基于强化学习的动态优化策略(RDO)组成。具体来说,RAA 通过类激活映射实现区域感知,并执行平移变换以实现特征对齐。当 MAF 利用相互关注机制进行特征交互融合时,它将 B 模式和剪切波弹性成像图像中的边缘特征和颜色特征分别挖掘出来,增强了特征的互补性,提高了可解释性。最后,RDO 将训练过程中的样本分布和预测概率作为强化学习的状态,动态优化损失函数的权重,从而解决了类不平衡的问题。基于临床数据集的实验结果证明了所提方法的有效性。我们的代码可在以下网址获取:https://github.com/Magnety/Multi_modal_Image。
{"title":"FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.","authors":"Yiyao Liu, Jinyao Li, Cheng Zhao, Yongtao Zhang, Qian Chen, Jing Qin, Lei Dong, Tianfu Wang, Wei Jiang, Baiying Lei","doi":"10.1109/TMI.2024.3485612","DOIUrl":"https://doi.org/10.1109/TMI.2024.3485612","url":null,"abstract":"<p><p>Automatic and accurate classification of breast cancer in multimodal ultrasound images is crucial to improve patients' diagnosis and treatment effect and save medical resources. Methodologically, the fusion of multimodal ultrasound images often encounters challenges such as misalignment, limited utilization of complementary information, poor interpretability in feature fusion, and imbalances in sample categories. To solve these problems, we propose a feature alignment mutual attention fusion method (FAMF-Net), which consists of a region awareness alignment (RAA) block, a mutual attention fusion (MAF) block, and a reinforcement learning-based dynamic optimization strategy(RDO). Specifically, RAA achieves region awareness through class activation mapping and performs translation transformation to achieve feature alignment. When MAF utilizes a mutual attention mechanism for feature interaction fusion, it mines edge and color features separately in B-mode and shear wave elastography images, enhancing the complementarity of features and improving interpretability. Finally, RDO uses the distribution of samples and prediction probabilities during training as the state of reinforcement learning to dynamically optimize the weights of the loss function, thereby solving the problem of class imbalance. The experimental results based on our clinically obtained dataset demonstrate the effectiveness of the proposed method. Our code will be available at: https://github.com/Magnety/Multi_modal_Image.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks”","authors":"Jiaxing Xu;Qingtian Bian;Xinhang Li;Aihu Zhang;Yiping Ke;Miao Qiao;Wei Zhang;Wei Khang Jeremy Sim;Balázs Gulyás","doi":"10.1109/TMI.2024.3465968","DOIUrl":"10.1109/TMI.2024.3465968","url":null,"abstract":"","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"43 11","pages":"4075-4075"},"PeriodicalIF":0.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10741900","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142577333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1109/TMI.2024.3485554
Kelly Payette, Celine Steger, Roxane Licandro, Priscille De Dumast, Hongwei Bran Li, Matthew Barkovich, Liu Li, Maik Dannecker, Chen Chen, Cheng Ouyang, Niccolo McConnell, Alina Miron, Yongmin Li, Alena Uus, Irina Grigorescu, Paula Ramirez Gilliland, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Haoyu Wang, Ziyan Huang, Jin Ye, Mireia Alenya, Valentin Comte, Oscar Camara, Jean-Baptiste Masson, Astrid Nilsson, Charlotte Godard, Moona Mazher, Abdul Qayyum, Yibo Gao, Hangqi Zhou, Shangqi Gao, Jia Fu, Guiming Dong, Guotai Wang, ZunHyan Rieu, HyeonSik Yang, Minwoo Lee, Szymon Plotka, Michal K Grzeszczyk, Arkadiusz Sitek, Luisa Vargas Daza, Santiago Usma, Pablo Arbelaez, Wenying Lu, Wenhao Zhang, Jing Liang, Romain Valabregue, Anand A Joshi, Krishna N Nayak, Richard M Leahy, Luca Wilhelmi, Aline Dandliker, Hui Ji, Antonio G Gennari, Anton Jakovcic, Melita Klaic, Ana Adzic, Pavel Markovic, Gracia Grabaric, Gregor Kasprian, Gregor Dovjak, Milan Rados, Lana Vasung, Meritxell Bach Cuadra, Andras Jakab
Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance. The multi-center FeTA Challenge 2022 focused on advancing the generalizability of fetal brain segmentation algorithms for magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained images and corresponding manually annotated multi-class labels from two imaging centers, and the testing data contained images from these two centers as well as two additional unseen centers. The multi-center data included different MR scanners, imaging parameters, and fetal brain super-resolution algorithms applied. 16 teams participated and 17 algorithms were evaluated. Here, the challenge results are presented, focusing on the generalizability of the submissions. Both in- and out-of-domain, the white matter and ventricles were segmented with the highest accuracy (Top Dice scores: 0.89, 0.87 respectively), while the most challenging structure remains the grey matter (Top Dice score: 0.75) due to anatomical complexity. The top 5 average Dices scores ranged from 0.81-0.82, the top 5 average 95th percentile Hausdorff distance values ranged from 2.3-2.5mm, and the top 5 volumetric similarity scores ranged from 0.90-0.92. The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.
{"title":"Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.","authors":"Kelly Payette, Celine Steger, Roxane Licandro, Priscille De Dumast, Hongwei Bran Li, Matthew Barkovich, Liu Li, Maik Dannecker, Chen Chen, Cheng Ouyang, Niccolo McConnell, Alina Miron, Yongmin Li, Alena Uus, Irina Grigorescu, Paula Ramirez Gilliland, Md Mahfuzur Rahman Siddiquee, Daguang Xu, Andriy Myronenko, Haoyu Wang, Ziyan Huang, Jin Ye, Mireia Alenya, Valentin Comte, Oscar Camara, Jean-Baptiste Masson, Astrid Nilsson, Charlotte Godard, Moona Mazher, Abdul Qayyum, Yibo Gao, Hangqi Zhou, Shangqi Gao, Jia Fu, Guiming Dong, Guotai Wang, ZunHyan Rieu, HyeonSik Yang, Minwoo Lee, Szymon Plotka, Michal K Grzeszczyk, Arkadiusz Sitek, Luisa Vargas Daza, Santiago Usma, Pablo Arbelaez, Wenying Lu, Wenhao Zhang, Jing Liang, Romain Valabregue, Anand A Joshi, Krishna N Nayak, Richard M Leahy, Luca Wilhelmi, Aline Dandliker, Hui Ji, Antonio G Gennari, Anton Jakovcic, Melita Klaic, Ana Adzic, Pavel Markovic, Gracia Grabaric, Gregor Kasprian, Gregor Dovjak, Milan Rados, Lana Vasung, Meritxell Bach Cuadra, Andras Jakab","doi":"10.1109/TMI.2024.3485554","DOIUrl":"https://doi.org/10.1109/TMI.2024.3485554","url":null,"abstract":"<p><p>Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance. The multi-center FeTA Challenge 2022 focused on advancing the generalizability of fetal brain segmentation algorithms for magnetic resonance imaging (MRI). In FeTA 2022, the training dataset contained images and corresponding manually annotated multi-class labels from two imaging centers, and the testing data contained images from these two centers as well as two additional unseen centers. The multi-center data included different MR scanners, imaging parameters, and fetal brain super-resolution algorithms applied. 16 teams participated and 17 algorithms were evaluated. Here, the challenge results are presented, focusing on the generalizability of the submissions. Both in- and out-of-domain, the white matter and ventricles were segmented with the highest accuracy (Top Dice scores: 0.89, 0.87 respectively), while the most challenging structure remains the grey matter (Top Dice score: 0.75) due to anatomical complexity. The top 5 average Dices scores ranged from 0.81-0.82, the top 5 average 95<sup>th</sup> percentile Hausdorff distance values ranged from 2.3-2.5mm, and the top 5 volumetric similarity scores ranged from 0.90-0.92. The FeTA Challenge 2022 was able to successfully evaluate and advance generalizability of multi-class fetal brain tissue segmentation algorithms for MRI and it continues to benchmark new algorithms.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prevalent studies on deep learning-based 3D medical image segmentation capture the continuous variation across 2D slices mainly via convolution, Transformer, inter-slice interaction, and time series models. In this work, via modeling this variation by an ordinary differential equation (ODE), we propose a cross instance query-guided Transformer architecture (CQformer) that leverages features from preceding slices to improve the segmentation performance of subsequent slices. Its key components include a cross-attention mechanism in an ODE formulation, which bridges the features of contiguous 2D slices of the 3D volumetric data. In addition, a regression head is employed to shorten the gap between the bottleneck and the prediction layer. Extensive experiments on 7 datasets with various modalities (CT, MRI) and tasks (organ, tissue, and lesion) demonstrate that CQformer outperforms previous state-of-the-art segmentation algorithms on 6 datasets by 0.44%-2.45%, and achieves the second highest performance of 88.30% on the BTCV dataset. The code will be publicly available after acceptance.
{"title":"CQformer: Learning Dynamics Across Slices in Medical Image Segmentation.","authors":"Shengjie Zhang, Xin Shen, Xiang Chen, Ziqi Yu, Bohan Ren, Haibo Yang, Xiao-Yong Zhang, Yuan Zhou","doi":"10.1109/TMI.2024.3477555","DOIUrl":"https://doi.org/10.1109/TMI.2024.3477555","url":null,"abstract":"<p><p>Prevalent studies on deep learning-based 3D medical image segmentation capture the continuous variation across 2D slices mainly via convolution, Transformer, inter-slice interaction, and time series models. In this work, via modeling this variation by an ordinary differential equation (ODE), we propose a cross instance query-guided Transformer architecture (CQformer) that leverages features from preceding slices to improve the segmentation performance of subsequent slices. Its key components include a cross-attention mechanism in an ODE formulation, which bridges the features of contiguous 2D slices of the 3D volumetric data. In addition, a regression head is employed to shorten the gap between the bottleneck and the prediction layer. Extensive experiments on 7 datasets with various modalities (CT, MRI) and tasks (organ, tissue, and lesion) demonstrate that CQformer outperforms previous state-of-the-art segmentation algorithms on 6 datasets by 0.44%-2.45%, and achieves the second highest performance of 88.30% on the BTCV dataset. The code will be publicly available after acceptance.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-09DOI: 10.1109/TMI.2024.3477317
Yuqi Tang, Nanchao Wang, Zhijie Dong, Matthew Lowerison, Angela Del Aguila, Natalie Johnston, Tri Vu, Chenshuo Ma, Yirui Xu, Wei Yang, Pengfei Song, Junjie Yao
Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO2), US imaging can probe the blood flow based on the Doppler effect. Further, by tracking gas-filled microbubbles, ultrasound localization microscopy (ULM) can map the blood flow velocity with sub-diffraction spatial resolution. In this work, we present a 3D deep-brain imaging system that seamlessly integrates PACT and ULM into a single device, 3D-PAULM. Using a low ultrasound frequency of 4 MHz, 3D-PAULM is capable of imaging the brain hemodynamic functions with intact scalp and skull in a totally non-invasive manner. Using 3D-PAULM, we studied the mouse brain functions with ischemic stroke. Multi-spectral PACT, US B-mode imaging, microbubble-enhanced power Doppler (PD), and ULM were performed on the same mouse brain with intrinsic image co-registration. From the multi-modality measurements, we further quantified blood perfusion, sO2, vessel density, and flow velocity of the mouse brain, showing stroke-induced ischemia, hypoxia, and reduced blood flow. We expect that 3D-PAULM can find broad applications in studying deep brain functions on small animal models.
{"title":"Non-invasive Deep-Brain Imaging with 3D Integrated Photoacoustic Tomography and Ultrasound Localization Microscopy (3D-PAULM).","authors":"Yuqi Tang, Nanchao Wang, Zhijie Dong, Matthew Lowerison, Angela Del Aguila, Natalie Johnston, Tri Vu, Chenshuo Ma, Yirui Xu, Wei Yang, Pengfei Song, Junjie Yao","doi":"10.1109/TMI.2024.3477317","DOIUrl":"10.1109/TMI.2024.3477317","url":null,"abstract":"<p><p>Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO2), US imaging can probe the blood flow based on the Doppler effect. Further, by tracking gas-filled microbubbles, ultrasound localization microscopy (ULM) can map the blood flow velocity with sub-diffraction spatial resolution. In this work, we present a 3D deep-brain imaging system that seamlessly integrates PACT and ULM into a single device, 3D-PAULM. Using a low ultrasound frequency of 4 MHz, 3D-PAULM is capable of imaging the brain hemodynamic functions with intact scalp and skull in a totally non-invasive manner. Using 3D-PAULM, we studied the mouse brain functions with ischemic stroke. Multi-spectral PACT, US B-mode imaging, microbubble-enhanced power Doppler (PD), and ULM were performed on the same mouse brain with intrinsic image co-registration. From the multi-modality measurements, we further quantified blood perfusion, sO2, vessel density, and flow velocity of the mouse brain, showing stroke-induced ischemia, hypoxia, and reduced blood flow. We expect that 3D-PAULM can find broad applications in studying deep brain functions on small animal models.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142396305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1109/TMI.2024.3474028
Yanfeng Zhou, Lingrui Li, Chenlong Wang, Le Song, Ge Yang
Semantic segmentation of electron microscopy (EM) images is crucial for nanoscale analysis. With the development of deep neural networks (DNNs), semantic segmentation of EM images has achieved remarkable success. However, current EM image segmentation models are usually extensions or adaptations of natural or biomedical models. They lack the full exploration and utilization of the intrinsic characteristics of EM images. Furthermore, they are often designed only for several specific segmentation objects and lack versatility. In this study, we quantitatively analyze the characteristics of EM images compared with those of natural and other biomedical images via the wavelet transform. To better utilize these characteristics, we design a high-frequency (HF) fusion network, GobletNet, which outperforms state-of-the-art models by a large margin in the semantic segmentation of EM images. We use the wavelet transform to generate HF images as extra inputs and use an extra encoding branch to extract HF information. Furthermore, we introduce a fusion-attention module (FAM) into GobletNet to facilitate better absorption and fusion of information from raw images and HF images. Extensive benchmarking on seven public EM datasets (EPFL, CREMI, SNEMI3D, UroCell, MitoEM, Nanowire and BetaSeg) demonstrates the effectiveness of our model. The code is available at https://github.com/Yanfeng-Zhou/GobletNet.
电子显微镜(EM)图像的语义分割对于纳米级分析至关重要。随着深度神经网络(DNN)的发展,电磁图像的语义分割取得了显著的成功。然而,目前的电磁图像分割模型通常是自然或生物医学模型的扩展或改编。它们缺乏对电磁图像内在特征的充分挖掘和利用。此外,它们通常只针对几个特定的分割对象而设计,缺乏通用性。在本研究中,我们通过小波变换定量分析了电磁图像与自然图像和其他生物医学图像相比的特征。为了更好地利用这些特点,我们设计了一种高频(HF)融合网络 GobletNet,它在 EM 图像的语义分割方面远远优于最先进的模型。我们使用小波变换生成高频图像作为额外输入,并使用额外的编码分支来提取高频信息。此外,我们还在 GobletNet 中引入了融合关注模块(FAM),以便更好地吸收和融合原始图像和高频图像中的信息。在七个公共电磁数据集(EPFL、CREMI、SNEMI3D、UroCell、MitoEM、Nanowire 和 BetaSeg)上进行的广泛基准测试证明了我们模型的有效性。代码可在 https://github.com/Yanfeng-Zhou/GobletNet 上获取。
{"title":"GobletNet: Wavelet-Based High-Frequency Fusion Network for Semantic Segmentation of Electron Microscopy Images.","authors":"Yanfeng Zhou, Lingrui Li, Chenlong Wang, Le Song, Ge Yang","doi":"10.1109/TMI.2024.3474028","DOIUrl":"https://doi.org/10.1109/TMI.2024.3474028","url":null,"abstract":"<p><p>Semantic segmentation of electron microscopy (EM) images is crucial for nanoscale analysis. With the development of deep neural networks (DNNs), semantic segmentation of EM images has achieved remarkable success. However, current EM image segmentation models are usually extensions or adaptations of natural or biomedical models. They lack the full exploration and utilization of the intrinsic characteristics of EM images. Furthermore, they are often designed only for several specific segmentation objects and lack versatility. In this study, we quantitatively analyze the characteristics of EM images compared with those of natural and other biomedical images via the wavelet transform. To better utilize these characteristics, we design a high-frequency (HF) fusion network, GobletNet, which outperforms state-of-the-art models by a large margin in the semantic segmentation of EM images. We use the wavelet transform to generate HF images as extra inputs and use an extra encoding branch to extract HF information. Furthermore, we introduce a fusion-attention module (FAM) into GobletNet to facilitate better absorption and fusion of information from raw images and HF images. Extensive benchmarking on seven public EM datasets (EPFL, CREMI, SNEMI3D, UroCell, MitoEM, Nanowire and BetaSeg) demonstrates the effectiveness of our model. The code is available at https://github.com/Yanfeng-Zhou/GobletNet.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1109/TMI.2024.3473970
Zhentao Liu, Yu Fang, Changjian Li, Han Wu, Yuan Liu, Dinggang Shen, Zhiming Cui
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging. Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image, leading to considerable radiation exposure. This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses. While recent advances, including deep learning and neural rendering algorithms, have made strides in this area, these methods either produce unsatisfactory results or suffer from time inefficiency of individual optimization. In this paper, we introduce a novel geometry-aware encoder-decoder framework to solve this problem. Our framework starts by encoding multi-view 2D features from various 2D X-ray projections with a 2D CNN encoder. Leveraging the geometry of CBCT scanning, it then back-projects the multi-view 2D features into the 3D space to formulate a comprehensive volumetric feature map, followed by a 3D CNN decoder to recover 3D CBCT image. Importantly, our approach respects the geometric relationship between 3D CBCT image and its 2D X-ray projections during feature back projection stage, and enjoys the prior knowledge learned from the data population. This ensures its adaptability in dealing with extremely sparse view inputs without individual training, such as scenarios with only 5 or 10 X-ray projections. Extensive evaluations on two simulated datasets and one real-world dataset demonstrate exceptional reconstruction quality and time efficiency of our method.
锥形束计算机断层扫描(CBCT)在临床成像中发挥着至关重要的作用。传统方法通常需要数百个二维 X 射线投影才能重建高质量的三维 CBCT 图像,从而导致大量辐射暴露。因此,人们对稀疏视图 CBCT 重建以减少辐射剂量的兴趣与日俱增。虽然包括深度学习和神经渲染算法在内的最新进展在这一领域取得了长足进步,但这些方法要么产生的结果不尽如人意,要么存在单个优化的时间效率低下问题。在本文中,我们介绍了一种新颖的几何感知编码器-解码器框架来解决这一问题。我们的框架首先使用二维 CNN 编码器对来自各种二维 X 射线投影的多视角二维特征进行编码。然后,利用 CBCT 扫描的几何原理,将多视角二维特征反向投影到三维空间,形成一个全面的容积特征图,再用三维 CNN 解码器恢复三维 CBCT 图像。重要的是,在特征反投影阶段,我们的方法尊重三维 CBCT 图像与其二维 X 射线投影之间的几何关系,并利用从数据群体中学到的先验知识。这确保了它在处理极其稀疏的视图输入时的适应性,而无需进行单独训练,例如只有 5 或 10 个 X 射线投影的情况。在两个模拟数据集和一个实际数据集上进行的广泛评估表明,我们的方法具有卓越的重建质量和时间效率。
{"title":"Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction.","authors":"Zhentao Liu, Yu Fang, Changjian Li, Han Wu, Yuan Liu, Dinggang Shen, Zhiming Cui","doi":"10.1109/TMI.2024.3473970","DOIUrl":"https://doi.org/10.1109/TMI.2024.3473970","url":null,"abstract":"<p><p>Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging. Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image, leading to considerable radiation exposure. This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses. While recent advances, including deep learning and neural rendering algorithms, have made strides in this area, these methods either produce unsatisfactory results or suffer from time inefficiency of individual optimization. In this paper, we introduce a novel geometry-aware encoder-decoder framework to solve this problem. Our framework starts by encoding multi-view 2D features from various 2D X-ray projections with a 2D CNN encoder. Leveraging the geometry of CBCT scanning, it then back-projects the multi-view 2D features into the 3D space to formulate a comprehensive volumetric feature map, followed by a 3D CNN decoder to recover 3D CBCT image. Importantly, our approach respects the geometric relationship between 3D CBCT image and its 2D X-ray projections during feature back projection stage, and enjoys the prior knowledge learned from the data population. This ensures its adaptability in dealing with extremely sparse view inputs without individual training, such as scenarios with only 5 or 10 X-ray projections. Extensive evaluations on two simulated datasets and one real-world dataset demonstrate exceptional reconstruction quality and time efficiency of our method.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1109/TMI.2024.3474250
Mareike Thies, Fabian Wagner, Noah Maul, Haijun Yu, Manuela Goldmann, Linda-Sophie Schneider, Mingxuan Gu, Siyuan Mei, Lukas Folle, Alexander Preuhs, Michael Manhart, Andreas Maier
Cone-beam computed tomography (CBCT) systems, with their flexibility, present a promising avenue for direct point-of-care medical imaging, particularly in critical scenarios such as acute stroke assessment. However, the integration of CBCT into clinical workflows faces challenges, primarily linked to long scan duration resulting in patient motion during scanning and leading to image quality degradation in the reconstructed volumes. This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm, which leverages generalized derivatives of the backprojection operator for cone-beam CT geometries. Building on that, a fully differentiable target function is formulated which grades the quality of the current motion estimate in reconstruction space. We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods. Additionally, we investigate the architecture of networks used for quality metric regression and propose predicting voxel-wise quality maps, favoring autoencoder-like architectures over contracting ones. This modification improves gradient flow, leading to more accurate motion estimation. The presented method is evaluated through realistic experiments on head anatomy. It achieves a reduction in reprojection error from an initial average of 3 mm to 0.61 mm after motion compensation and consistently demonstrates superior performance compared to existing approaches. The analytic Jacobian for the backprojection operation, which is at the core of the proposed method, is made publicly available. In summary, this paper contributes to the advancement of CBCT integration into clinical workflows by proposing a robust motion estimation approach that enhances efficiency and accuracy, addressing critical challenges in time-sensitive scenarios.
{"title":"A gradient-based approach to fast and accurate head motion compensation in cone-beam CT.","authors":"Mareike Thies, Fabian Wagner, Noah Maul, Haijun Yu, Manuela Goldmann, Linda-Sophie Schneider, Mingxuan Gu, Siyuan Mei, Lukas Folle, Alexander Preuhs, Michael Manhart, Andreas Maier","doi":"10.1109/TMI.2024.3474250","DOIUrl":"10.1109/TMI.2024.3474250","url":null,"abstract":"<p><p>Cone-beam computed tomography (CBCT) systems, with their flexibility, present a promising avenue for direct point-of-care medical imaging, particularly in critical scenarios such as acute stroke assessment. However, the integration of CBCT into clinical workflows faces challenges, primarily linked to long scan duration resulting in patient motion during scanning and leading to image quality degradation in the reconstructed volumes. This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm, which leverages generalized derivatives of the backprojection operator for cone-beam CT geometries. Building on that, a fully differentiable target function is formulated which grades the quality of the current motion estimate in reconstruction space. We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods. Additionally, we investigate the architecture of networks used for quality metric regression and propose predicting voxel-wise quality maps, favoring autoencoder-like architectures over contracting ones. This modification improves gradient flow, leading to more accurate motion estimation. The presented method is evaluated through realistic experiments on head anatomy. It achieves a reduction in reprojection error from an initial average of 3 mm to 0.61 mm after motion compensation and consistently demonstrates superior performance compared to existing approaches. The analytic Jacobian for the backprojection operation, which is at the core of the proposed method, is made publicly available. In summary, this paper contributes to the advancement of CBCT integration into clinical workflows by proposing a robust motion estimation approach that enhances efficiency and accuracy, addressing critical challenges in time-sensitive scenarios.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1109/TMI.2024.3473745
Yongjian Wu, Yang Zhou, Jiya Saiyin, Bingzheng Wei, Maode Lai, Jianzhong Shou, Yan Xu
Large-scale visual-language pre-trained models (VLPMs) have demonstrated exceptional performance in downstream object detection through text prompts for natural scenes. However, their application to zero-shot nuclei detection on histopathology images remains relatively unexplored, mainly due to the significant gap between the characteristics of medical images and the weboriginated text-image pairs used for pre-training. This paper aims to investigate the potential of the object-level VLPM, Grounded Language-Image Pre-training (GLIP), for zero-shot nuclei detection. Specifically, we propose an innovative auto-prompting pipeline, named AttriPrompter, comprising attribute generation, attribute augmentation, and relevance sorting, to avoid subjective manual prompt design. AttriPrompter utilizes VLPMs' text-to-image alignment to create semantically rich text prompts, which are then fed into GLIP for initial zero-shot nuclei detection. Additionally, we propose a self-trained knowledge distillation framework, where GLIP serves as the teacher with its initial predictions used as pseudo labels, to address the challenges posed by high nuclei density, including missed detections, false positives, and overlapping instances. Our method exhibits remarkable performance in label-free nuclei detection, out-performing all existing unsupervised methods and demonstrating excellent generality. Notably, this work highlights the astonishing potential of VLPMs pre-trained on natural image-text pairs for downstream tasks in the medical field as well. Code will be released at github.com/AttriPrompter.
{"title":"AttriPrompter: Auto-Prompting with Attribute Semantics for Zero-shot Nuclei Detection via Visual-Language Pre-trained Models.","authors":"Yongjian Wu, Yang Zhou, Jiya Saiyin, Bingzheng Wei, Maode Lai, Jianzhong Shou, Yan Xu","doi":"10.1109/TMI.2024.3473745","DOIUrl":"10.1109/TMI.2024.3473745","url":null,"abstract":"<p><p>Large-scale visual-language pre-trained models (VLPMs) have demonstrated exceptional performance in downstream object detection through text prompts for natural scenes. However, their application to zero-shot nuclei detection on histopathology images remains relatively unexplored, mainly due to the significant gap between the characteristics of medical images and the weboriginated text-image pairs used for pre-training. This paper aims to investigate the potential of the object-level VLPM, Grounded Language-Image Pre-training (GLIP), for zero-shot nuclei detection. Specifically, we propose an innovative auto-prompting pipeline, named AttriPrompter, comprising attribute generation, attribute augmentation, and relevance sorting, to avoid subjective manual prompt design. AttriPrompter utilizes VLPMs' text-to-image alignment to create semantically rich text prompts, which are then fed into GLIP for initial zero-shot nuclei detection. Additionally, we propose a self-trained knowledge distillation framework, where GLIP serves as the teacher with its initial predictions used as pseudo labels, to address the challenges posed by high nuclei density, including missed detections, false positives, and overlapping instances. Our method exhibits remarkable performance in label-free nuclei detection, out-performing all existing unsupervised methods and demonstrating excellent generality. Notably, this work highlights the astonishing potential of VLPMs pre-trained on natural image-text pairs for downstream tasks in the medical field as well. Code will be released at github.com/AttriPrompter.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}