Pub Date : 2025-12-09DOI: 10.1109/TMI.2025.3642134
Tengya Peng, Ruyi Zha, Zhen Li, Xiaofeng Liu, Qing Zou
Three-Dimensional Gaussian representation (3DGS) has shown substantial promise in the field of computer vision, but remains unexplored in the field of magnetic resonance imaging (MRI). This study explores its potential for the reconstruction of isotropic resolution 3D MRI from undersampled k-space data. We introduce a novel framework termed 3D Gaussian MRI (3DGSMR), which employs 3D Gaussian distributions as an explicit representation for MR volumes. Experimental evaluations indicate that this method can effectively reconstruct voxelized MR images, achieving a quality on par with that of well-established 3D MRI reconstruction techniques found in the literature. Notably, the 3DGSMR scheme operates under a self-supervised framework, obviating the need for extensive training datasets or prior model training. This approach introduces significant innovations to the domain, notably the adaptation of 3DGS to MRI reconstruction and the novel application of the existing 3DGS methodology to decompose MR signals, which are presented in a complex-valued format.
{"title":"Three-Dimensional MRI Reconstruction with 3D Gaussian Representations: Tackling the Undersampling Problem.","authors":"Tengya Peng, Ruyi Zha, Zhen Li, Xiaofeng Liu, Qing Zou","doi":"10.1109/TMI.2025.3642134","DOIUrl":"https://doi.org/10.1109/TMI.2025.3642134","url":null,"abstract":"<p><p>Three-Dimensional Gaussian representation (3DGS) has shown substantial promise in the field of computer vision, but remains unexplored in the field of magnetic resonance imaging (MRI). This study explores its potential for the reconstruction of isotropic resolution 3D MRI from undersampled k-space data. We introduce a novel framework termed 3D Gaussian MRI (3DGSMR), which employs 3D Gaussian distributions as an explicit representation for MR volumes. Experimental evaluations indicate that this method can effectively reconstruct voxelized MR images, achieving a quality on par with that of well-established 3D MRI reconstruction techniques found in the literature. Notably, the 3DGSMR scheme operates under a self-supervised framework, obviating the need for extensive training datasets or prior model training. This approach introduces significant innovations to the domain, notably the adaptation of 3DGS to MRI reconstruction and the novel application of the existing 3DGS methodology to decompose MR signals, which are presented in a complex-valued format.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-02DOI: 10.1109/TMI.2025.3639398
Matthew A McCready, Xiaozhi Cao, Kawin Setsompop, John M Pauly, Adam B Kerr
A customizable method (OPTIKS) for designing fast trajectory-constrained gradient waveforms with optimized time domain properties was developed. Given a specified multidimensional k-space trajectory, the method optimizes traversal speed (and therefore timing) with position along the trajectory. OPTIKS facilitates optimization of objectives dependent on the time domain gradient waveform and the arc-length domain k-space speed. OPTIKS is applied to design waveforms which limit peripheral nerve stimulation (PNS), minimize mechanical resonance excitation, and reduce acoustic noise. A variety of trajectory examples are presented including spirals, circular echo-planar-imaging, and rosettes. Design performance is evaluated based on duration, standardized PNS models, field measurements, gradient coil back-EMF measurements, and calibrated acoustic measurements. We show reductions in back-EMF of up to 94% and field oscillations up to 91.1%, acoustic noise decreases of up to 9.22 dB, and with efficient use of PNS models speed increases of up to 11.4%. The design method implementation is made available as an open source Python package through GitHub (https://github.com/mamccready/optiks).
{"title":"OPTIKS: Optimized Gradient Properties Through Timing in K-Space.","authors":"Matthew A McCready, Xiaozhi Cao, Kawin Setsompop, John M Pauly, Adam B Kerr","doi":"10.1109/TMI.2025.3639398","DOIUrl":"https://doi.org/10.1109/TMI.2025.3639398","url":null,"abstract":"<p><p>A customizable method (OPTIKS) for designing fast trajectory-constrained gradient waveforms with optimized time domain properties was developed. Given a specified multidimensional k-space trajectory, the method optimizes traversal speed (and therefore timing) with position along the trajectory. OPTIKS facilitates optimization of objectives dependent on the time domain gradient waveform and the arc-length domain k-space speed. OPTIKS is applied to design waveforms which limit peripheral nerve stimulation (PNS), minimize mechanical resonance excitation, and reduce acoustic noise. A variety of trajectory examples are presented including spirals, circular echo-planar-imaging, and rosettes. Design performance is evaluated based on duration, standardized PNS models, field measurements, gradient coil back-EMF measurements, and calibrated acoustic measurements. We show reductions in back-EMF of up to 94% and field oscillations up to 91.1%, acoustic noise decreases of up to 9.22 dB, and with efficient use of PNS models speed increases of up to 11.4%. The design method implementation is made available as an open source Python package through GitHub (https://github.com/mamccready/optiks).</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145663017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.1109/TMI.2025.3585765
Haibo Jin, Haoxuan Che, Sunan He, Hao Chen
Despite the progress of radiology report generation (RRG), existing works face two challenges: 1) The performances in clinical efficacy are unsatisfactory, especially for lesion attributes description; 2) the generated text lacks explainability, making it difficult for radiologists to trust the results. To address the challenges, we focus on a trustworthy RRG model, which not only generates accurate descriptions of abnormalities, but also provides basis of its predictions. To this end, we propose a framework named chain of diagnosis (CoD), which maintains a chain of diagnostic process for clinically accurate and explainable RRG. It first generates question-answer (QA) pairs via diagnostic conversation to extract key findings, then prompts a large language model with QA diagnoses for accurate generation. To enhance explainability, a diagnosis grounding module is designed to match QA diagnoses and generated sentences, where the diagnoses act as a reference. Moreover, a lesion grounding module is designed to locate abnormalities in the image, further improving the working efficiency of radiologists. To facilitate label-efficient training, we propose an omni-supervised learning strategy with clinical consistency to leverage various types of annotations from different datasets. Our efforts lead to 1) an omni-labeled RRG dataset with QA pairs and lesion boxes; 2) a evaluation tool for assessing the accuracy of reports in describing lesion location and severity; 3) extensive experiments to demonstrate the effectiveness of CoD, where it outperforms both specialist and generalist models consistently on two RRG benchmarks and shows promising explainability by accurately grounding generated sentences to QA diagnoses and images.
{"title":"A Chain of Diagnosis Framework for Accurate and Explainable Radiology Report Generation.","authors":"Haibo Jin, Haoxuan Che, Sunan He, Hao Chen","doi":"10.1109/TMI.2025.3585765","DOIUrl":"10.1109/TMI.2025.3585765","url":null,"abstract":"<p><p>Despite the progress of radiology report generation (RRG), existing works face two challenges: 1) The performances in clinical efficacy are unsatisfactory, especially for lesion attributes description; 2) the generated text lacks explainability, making it difficult for radiologists to trust the results. To address the challenges, we focus on a trustworthy RRG model, which not only generates accurate descriptions of abnormalities, but also provides basis of its predictions. To this end, we propose a framework named chain of diagnosis (CoD), which maintains a chain of diagnostic process for clinically accurate and explainable RRG. It first generates question-answer (QA) pairs via diagnostic conversation to extract key findings, then prompts a large language model with QA diagnoses for accurate generation. To enhance explainability, a diagnosis grounding module is designed to match QA diagnoses and generated sentences, where the diagnoses act as a reference. Moreover, a lesion grounding module is designed to locate abnormalities in the image, further improving the working efficiency of radiologists. To facilitate label-efficient training, we propose an omni-supervised learning strategy with clinical consistency to leverage various types of annotations from different datasets. Our efforts lead to 1) an omni-labeled RRG dataset with QA pairs and lesion boxes; 2) a evaluation tool for assessing the accuracy of reports in describing lesion location and severity; 3) extensive experiments to demonstrate the effectiveness of CoD, where it outperforms both specialist and generalist models consistently on two RRG benchmarks and shows promising explainability by accurately grounding generated sentences to QA diagnoses and images.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":"4986-4997"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01DOI: 10.1109/TMI.2025.3585880
Yuhui Du, Zheng Wang, Ju Niu, Yulong Wang, Godfrey D Pearlson, Vince D Calhoun
The subjective nature of diagnosing mental disorders complicates achieving accurate diagnoses. The complex relationship among disorders further exacerbates this issue, particularly in clinical practice where conditions like bipolar disorder (BP) and schizophrenia (SZ) can present similar clinical symptoms and cognitive impairments. To address these challenges, this paper proposes a mutualistic multi-network noisy label learning (MMNNLL) method, which aims to enhance diagnostic accuracy by leveraging neuroimaging data under the presence of potential clinical diagnosis bias or errors. MMNNLL effectively utilizes multiple deep neural networks (DNNs) for learning from data with noisy labels by maximizing the consistency among DNNs in identifying and utilizing samples with clean and noisy labels. Experimental results on public CIFAR-10 and PathMNIST datasets demonstrate the effectiveness of our method in classifying independent test data across various types and levels of label noise. Additionally, our MMNNLL method significantly outperforms state-of-the-art noisy label learning methods. When applied to brain functional connectivity data from BP and SZ patients, our method identifies two biotypes that show more pronounced group differences, and improved classification accuracy compared to the original clinical categories, using both traditional machine learning and advanced deep learning techniques. In summary, our method effectively addresses the possible inaccuracy in nosology of mental disorders and achieves transdiagnostic classification through robust noisy label learning via multi-network collaboration and competition.
{"title":"Mutualistic Multi-Network Noisy Label Learning (MMNNLL) Method and Its Application to Transdiagnostic Classification of Bipolar Disorder and Schizophrenia.","authors":"Yuhui Du, Zheng Wang, Ju Niu, Yulong Wang, Godfrey D Pearlson, Vince D Calhoun","doi":"10.1109/TMI.2025.3585880","DOIUrl":"10.1109/TMI.2025.3585880","url":null,"abstract":"<p><p>The subjective nature of diagnosing mental disorders complicates achieving accurate diagnoses. The complex relationship among disorders further exacerbates this issue, particularly in clinical practice where conditions like bipolar disorder (BP) and schizophrenia (SZ) can present similar clinical symptoms and cognitive impairments. To address these challenges, this paper proposes a mutualistic multi-network noisy label learning (MMNNLL) method, which aims to enhance diagnostic accuracy by leveraging neuroimaging data under the presence of potential clinical diagnosis bias or errors. MMNNLL effectively utilizes multiple deep neural networks (DNNs) for learning from data with noisy labels by maximizing the consistency among DNNs in identifying and utilizing samples with clean and noisy labels. Experimental results on public CIFAR-10 and PathMNIST datasets demonstrate the effectiveness of our method in classifying independent test data across various types and levels of label noise. Additionally, our MMNNLL method significantly outperforms state-of-the-art noisy label learning methods. When applied to brain functional connectivity data from BP and SZ patients, our method identifies two biotypes that show more pronounced group differences, and improved classification accuracy compared to the original clinical categories, using both traditional machine learning and advanced deep learning techniques. In summary, our method effectively addresses the possible inaccuracy in nosology of mental disorders and achieves transdiagnostic classification through robust noisy label learning via multi-network collaboration and competition.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":"5014-5026"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144565572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deep implicit functions (DIFs) effectively represent shapes by using a neural network to map 3D spatial coordinates to scalar values that encode the shape's geometry, but it is difficult to establish correspondences between shapes directly, limiting their use in medical image registration. The recently presented deformation field-based methods achieve implicit templates learning via template field learning with DIFs and deformation field learning, establishing shape correspondence through deformation fields. Although these approaches enable joint learning of shape representation and shape correspondence, the decoupled optimization for template field and deformation field, caused by the absence of deformation annotations lead to a relatively accurate template field but an underoptimized deformation field. In this paper, we propose a novel implicit template learning framework via a shared hybrid diffeomorphic flow (SHDF), which enables shared optimization for deformation and template, contributing to better deformations and shape representation. Specifically, we formulate the signed distance function (SDF, a type of DIFs) as a one-dimensional (1D) integral, unifying dimensions to match the form used in solving ordinary differential equation (ODE) for deformation field learning. Then, SDF in 1D integral form is integrated seamlessly into the deformation field learning. Using a recurrent learning strategy, we frame shape representations and deformations as solving different initial value problems of the same ODE. We also introduce a global smoothness regularization to handle local optima due to limited outside-of-shape data. Experiments on medical datasets show that SHDF outperforms state-of-the-art methods in shape representation and registration.
{"title":"Joint Shape Reconstruction and Registration via a Shared Hybrid Diffeomorphic Flow.","authors":"Hengxiang Shi, Ping Wang, Shouhui Zhang, Xiuyang Zhao, Bo Yang, Caiming Zhang","doi":"10.1109/TMI.2025.3585560","DOIUrl":"10.1109/TMI.2025.3585560","url":null,"abstract":"<p><p>Deep implicit functions (DIFs) effectively represent shapes by using a neural network to map 3D spatial coordinates to scalar values that encode the shape's geometry, but it is difficult to establish correspondences between shapes directly, limiting their use in medical image registration. The recently presented deformation field-based methods achieve implicit templates learning via template field learning with DIFs and deformation field learning, establishing shape correspondence through deformation fields. Although these approaches enable joint learning of shape representation and shape correspondence, the decoupled optimization for template field and deformation field, caused by the absence of deformation annotations lead to a relatively accurate template field but an underoptimized deformation field. In this paper, we propose a novel implicit template learning framework via a shared hybrid diffeomorphic flow (SHDF), which enables shared optimization for deformation and template, contributing to better deformations and shape representation. Specifically, we formulate the signed distance function (SDF, a type of DIFs) as a one-dimensional (1D) integral, unifying dimensions to match the form used in solving ordinary differential equation (ODE) for deformation field learning. Then, SDF in 1D integral form is integrated seamlessly into the deformation field learning. Using a recurrent learning strategy, we frame shape representations and deformations as solving different initial value problems of the same ODE. We also introduce a global smoothness regularization to handle local optima due to limited outside-of-shape data. Experiments on medical datasets show that SHDF outperforms state-of-the-art methods in shape representation and registration.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":"4998-5013"},"PeriodicalIF":0.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144562424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-27DOI: 10.1109/TMI.2025.3613074
Tianming Liu;Dinggang Shen;Jong Chul Ye;Marleen de Bruijne;Wei Liu
Pretrained on massive datasets, Foundation Models (FMs) are revolutionizing medical imaging by offering scalable and generalizable solutions to longstanding challenges. This Special Issue on Advancements in Foundation Models for Medical Imaging presents FM-related works that explore the potential of FMs to address data scarcity, domain shifts, and multimodal integration across a wide range of medical imaging tasks, including segmentation, diagnosis, reconstruction, and prognosis. The included papers also examine critical concerns such as interpretability, efficiency, benchmarking, and ethics in the adoption of FMs for medical imaging. Collectively, the articles in this Special Issue mark a significant step toward establishing FMs as a cornerstone of next-generation medical imaging AI.
{"title":"Guest Editorial Special Issue on Advancements in Foundation Models for Medical Imaging","authors":"Tianming Liu;Dinggang Shen;Jong Chul Ye;Marleen de Bruijne;Wei Liu","doi":"10.1109/TMI.2025.3613074","DOIUrl":"https://doi.org/10.1109/TMI.2025.3613074","url":null,"abstract":"Pretrained on massive datasets, Foundation Models (FMs) are revolutionizing medical imaging by offering scalable and generalizable solutions to longstanding challenges. This Special Issue on Advancements in Foundation Models for Medical Imaging presents FM-related works that explore the potential of FMs to address data scarcity, domain shifts, and multimodal integration across a wide range of medical imaging tasks, including segmentation, diagnosis, reconstruction, and prognosis. The included papers also examine critical concerns such as interpretability, efficiency, benchmarking, and ethics in the adoption of FMs for medical imaging. Collectively, the articles in this Special Issue mark a significant step toward establishing FMs as a cornerstone of next-generation medical imaging AI.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 10","pages":"3894-3897"},"PeriodicalIF":0.0,"publicationDate":"2025-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11218696","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145371487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-20DOI: 10.1109/TMI.2025.3623507
Lin Zhao, Xin Yu, Yikang Liu, Xiao Chen, Eric Z Chen, Terrence Chen, Shanhui Sun
Accurate correspondence matching in coronary angiography images is crucial for reconstructing 3D coronary artery structures, which is essential for precise diagnosis and treatment planning of coronary artery disease (CAD). Traditional matching methods for natural images often fail to generalize to X-ray images due to inherent differences such as lack of texture, lower contrast, and overlapping structures, compounded by insufficient training data. To address these challenges, we propose a novel pipeline that generates realistic paired coronary angiography images using a diffusion model conditioned on 2D projections of 3D reconstructed meshes from Coronary Computed Tomography Angiography (CCTA), providing high-quality synthetic data for training. Additionally, we employ large-scale image foundation models to guide feature aggregation, enhancing correspondence matching accuracy by focusing on semantically relevant regions and keypoints. Our approach demonstrates superior matching performance on synthetic datasets and effectively generalizes to real-world datasets, offering a practical solution for this task. Furthermore, our work investigates the efficacy of different foundation models in correspondence matching, providing novel insights into leveraging advanced image foundation models for medical imaging applications.
{"title":"Leveraging Diffusion Model and Image Foundation Model for Improved Correspondence Matching in Coronary Angiography.","authors":"Lin Zhao, Xin Yu, Yikang Liu, Xiao Chen, Eric Z Chen, Terrence Chen, Shanhui Sun","doi":"10.1109/TMI.2025.3623507","DOIUrl":"https://doi.org/10.1109/TMI.2025.3623507","url":null,"abstract":"<p><p>Accurate correspondence matching in coronary angiography images is crucial for reconstructing 3D coronary artery structures, which is essential for precise diagnosis and treatment planning of coronary artery disease (CAD). Traditional matching methods for natural images often fail to generalize to X-ray images due to inherent differences such as lack of texture, lower contrast, and overlapping structures, compounded by insufficient training data. To address these challenges, we propose a novel pipeline that generates realistic paired coronary angiography images using a diffusion model conditioned on 2D projections of 3D reconstructed meshes from Coronary Computed Tomography Angiography (CCTA), providing high-quality synthetic data for training. Additionally, we employ large-scale image foundation models to guide feature aggregation, enhancing correspondence matching accuracy by focusing on semantically relevant regions and keypoints. Our approach demonstrates superior matching performance on synthetic datasets and effectively generalizes to real-world datasets, offering a practical solution for this task. Furthermore, our work investigates the efficacy of different foundation models in correspondence matching, providing novel insights into leveraging advanced image foundation models for medical imaging applications.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145338362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-16DOI: 10.1109/TMI.2025.3622522
Minghan Li, Congcong Wen, Yu Tian, Min Shi, Yan Luo, Hao Huang, Yi Fang, Mengyu Wang
Fairness remains a critical concern in healthcare, where unequal access to services and treatment outcomes can adversely affect patient health. While Federated Learning (FL) presents a collaborative and privacy-preserving approach to model training, ensuring fairness is challenging due to heterogeneous data across institutions, and current research primarily addresses non-medical applications. To fill this gap, we establish the first experimental benchmark for fairness in medical FL, evaluating six representative FL methods across diverse demographic attributes and imaging modalities. We introduce FairFedMed, the first medical FL dataset specifically designed to study group fairness (i.e., consistent performance across demographic groups). It comprises two parts: FairFedMed-Oph, featuring 2D fundus and 3D OCT ophthalmology samples with six demographic attributes; and FairFedMed-Chest, which simulates real cross-institutional FL using subsets of CheXpert and MIMIC-CXR. Together, they support both simulated and real-world FL across diverse medical modalities and demographic groups. Existing FL models often underperform on medical images and overlook fairness across demographic groups. To address this, we propose FairLoRA, a fairness-aware FL framework based on SVD-based low-rank approximation. It customizes singular value matrices per demographic group while sharing singular vectors, ensuring both fairness and efficiency. Experimental results on the FairFedMed dataset demonstrate that FairLoRA not only achieves state-of-the-art performance in medical image classification but also significantly improves fairness across diverse populations. Our code and dataset can be accessible via GitHub link: https://github.com/Harvard-AI-and-Robotics-Lab/FairFedMed.
{"title":"FairFedMed: Benchmarking Group Fairness in Federated Medical Imaging with FairLoRA.","authors":"Minghan Li, Congcong Wen, Yu Tian, Min Shi, Yan Luo, Hao Huang, Yi Fang, Mengyu Wang","doi":"10.1109/TMI.2025.3622522","DOIUrl":"https://doi.org/10.1109/TMI.2025.3622522","url":null,"abstract":"<p><p>Fairness remains a critical concern in healthcare, where unequal access to services and treatment outcomes can adversely affect patient health. While Federated Learning (FL) presents a collaborative and privacy-preserving approach to model training, ensuring fairness is challenging due to heterogeneous data across institutions, and current research primarily addresses non-medical applications. To fill this gap, we establish the first experimental benchmark for fairness in medical FL, evaluating six representative FL methods across diverse demographic attributes and imaging modalities. We introduce FairFedMed, the first medical FL dataset specifically designed to study group fairness (i.e., consistent performance across demographic groups). It comprises two parts: FairFedMed-Oph, featuring 2D fundus and 3D OCT ophthalmology samples with six demographic attributes; and FairFedMed-Chest, which simulates real cross-institutional FL using subsets of CheXpert and MIMIC-CXR. Together, they support both simulated and real-world FL across diverse medical modalities and demographic groups. Existing FL models often underperform on medical images and overlook fairness across demographic groups. To address this, we propose FairLoRA, a fairness-aware FL framework based on SVD-based low-rank approximation. It customizes singular value matrices per demographic group while sharing singular vectors, ensuring both fairness and efficiency. Experimental results on the FairFedMed dataset demonstrate that FairLoRA not only achieves state-of-the-art performance in medical image classification but also significantly improves fairness across diverse populations. Our code and dataset can be accessible via GitHub link: https://github.com/Harvard-AI-and-Robotics-Lab/FairFedMed.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145310409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-09DOI: 10.1109/TMI.2025.3607875
Walter Simson, Louise Zhuang, Benjamin N Frey, Sergio J Sanabria, Jeremy J Dahl, Dongwoon Hyun
In ultrasound imaging, propagation of an acoustic wavefront through heterogeneous media causes phase aberrations that degrade the coherence of the reflected wavefront, leading to reduced image resolution and contrast. Adaptive imaging techniques attempt to correct this phase aberration and restore coherence, leading to improved focusing of the image. We propose an autofocusing paradigm for aberration correction in ultrasound imaging by fitting an acoustic velocity field to pressure measurements, via optimization of the common midpoint phase error (CMPE), using a straight-ray wave propagation model for beamforming in diffusely scattering media. We show that CMPE induced by heterogeneous acoustic velocity is a robust measure of phase aberration that can be used for acoustic autofocusing. CMPE is optimized iteratively using a differentiable beamforming approach to simultaneously improve the image focus while estimating the acoustic velocity field of the interrogated medium. The approach relies solely on wavefield measurements using a straight-ray integral solution of the two-way time-of-flight without explicit numerical time-stepping models of wave propagation. We demonstrate method performance through in silico simulations, in vitro phantom measurements, and in vivo mammalian models, showing practical applications in distributed aberration quantification, correction, and velocity estimation for medical ultrasound autofocusing.
{"title":"Ultrasound Autofocusing: Common Midpoint Phase Error Optimization via Differentiable Beamforming.","authors":"Walter Simson, Louise Zhuang, Benjamin N Frey, Sergio J Sanabria, Jeremy J Dahl, Dongwoon Hyun","doi":"10.1109/TMI.2025.3607875","DOIUrl":"10.1109/TMI.2025.3607875","url":null,"abstract":"<p><p>In ultrasound imaging, propagation of an acoustic wavefront through heterogeneous media causes phase aberrations that degrade the coherence of the reflected wavefront, leading to reduced image resolution and contrast. Adaptive imaging techniques attempt to correct this phase aberration and restore coherence, leading to improved focusing of the image. We propose an autofocusing paradigm for aberration correction in ultrasound imaging by fitting an acoustic velocity field to pressure measurements, via optimization of the common midpoint phase error (CMPE), using a straight-ray wave propagation model for beamforming in diffusely scattering media. We show that CMPE induced by heterogeneous acoustic velocity is a robust measure of phase aberration that can be used for acoustic autofocusing. CMPE is optimized iteratively using a differentiable beamforming approach to simultaneously improve the image focus while estimating the acoustic velocity field of the interrogated medium. The approach relies solely on wavefield measurements using a straight-ray integral solution of the two-way time-of-flight without explicit numerical time-stepping models of wave propagation. We demonstrate method performance through in silico simulations, in vitro phantom measurements, and in vivo mammalian models, showing practical applications in distributed aberration quantification, correction, and velocity estimation for medical ultrasound autofocusing.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145031617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-19DOI: 10.1109/TMI.2025.3600327
Xiling Luo, Yi Wang, Le Ou-Yang
Accurate segmentation of ultrasound images plays a critical role in disease screening and diagnosis. Recently, neural network-based methods have garnered significant attention for their potential in improving ultrasound image segmentation. However, these methods still face significant challenges, primarily due to inherent issues in ultrasound images, such as low resolution, speckle noise, and artifacts. Additionally, ultrasound image segmentation encompasses a wide range of scenarios, including organ segmentation (e.g., cardiac and fetal head) and lesion segmentation (e.g., breast cancer and thyroid nodules), making the task highly diverse and complex. Existing methods are often designed for specific segmentation scenarios, which limits their flexibility and ability to meet the diverse needs across various scenarios. To address these challenges, we propose a novel Localized and Globalized Frequency Fusion Model (LGFFM) for ultrasound image segmentation. Specifically, we first design a Parallel Bi-Encoder (PBE) architecture that integrates Local Feature Blocks (LFB) and Global Feature Blocks (GLB) to enhance feature extraction. Additionally, we introduce a Frequency Domain Mapping Module (FDMM) to capture texture information, particularly high-frequency details such as edges. Finally, a Multi-Domain Fusion (MDF) method is developed to effectively integrate features across different domains. We conduct extensive experiments on eight representative public ultrasound datasets across four different types. The results demonstrate that LGFFM outperforms current state-of-the-art methods in both segmentation accuracy and generalization performance.
{"title":"LGFFM: A Localized and Globalized Frequency Fusion Model for Ultrasound Image Segmentation.","authors":"Xiling Luo, Yi Wang, Le Ou-Yang","doi":"10.1109/TMI.2025.3600327","DOIUrl":"10.1109/TMI.2025.3600327","url":null,"abstract":"<p><p>Accurate segmentation of ultrasound images plays a critical role in disease screening and diagnosis. Recently, neural network-based methods have garnered significant attention for their potential in improving ultrasound image segmentation. However, these methods still face significant challenges, primarily due to inherent issues in ultrasound images, such as low resolution, speckle noise, and artifacts. Additionally, ultrasound image segmentation encompasses a wide range of scenarios, including organ segmentation (e.g., cardiac and fetal head) and lesion segmentation (e.g., breast cancer and thyroid nodules), making the task highly diverse and complex. Existing methods are often designed for specific segmentation scenarios, which limits their flexibility and ability to meet the diverse needs across various scenarios. To address these challenges, we propose a novel Localized and Globalized Frequency Fusion Model (LGFFM) for ultrasound image segmentation. Specifically, we first design a Parallel Bi-Encoder (PBE) architecture that integrates Local Feature Blocks (LFB) and Global Feature Blocks (GLB) to enhance feature extraction. Additionally, we introduce a Frequency Domain Mapping Module (FDMM) to capture texture information, particularly high-frequency details such as edges. Finally, a Multi-Domain Fusion (MDF) method is developed to effectively integrate features across different domains. We conduct extensive experiments on eight representative public ultrasound datasets across four different types. The results demonstrate that LGFFM outperforms current state-of-the-art methods in both segmentation accuracy and generalization performance.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144884639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}