Non-coding genome contribution to ALS.

International review of neurobiology Pub Date : 2024-01-01 Epub Date: 2024-05-19 DOI:10.1016/bs.irn.2024.04.002
Tobias Moll, Calum Harvey, Elham Alhathli, Sarah Gornall, David O'Brien, Johnathan Cooper-Knock
{"title":"Non-coding genome contribution to ALS.","authors":"Tobias Moll, Calum Harvey, Elham Alhathli, Sarah Gornall, David O'Brien, Johnathan Cooper-Knock","doi":"10.1016/bs.irn.2024.04.002","DOIUrl":null,"url":null,"abstract":"<p><p>The majority of amyotrophic lateral sclerosis (ALS) is caused by a complex gene-environment interaction. Despite high estimates of heritability, the genetic basis of disease in the majority of ALS patients are unknown. This limits the development of targeted genetic therapies which require an understanding of patient-specific genetic drivers. There is good evidence that the majority of these missing genetic risk factors are likely to be found within the non-coding genome. However, a major challenge in the discovery of non-coding risk variants is determining which variants are functional in which specific CNS cell type. We summarise current discoveries of ALS-associated genetic drivers within the non-coding genome and we make the case that improved cell-specific annotation of genomic function is required to advance this field, particularly via single-cell epigenetic profiling and spatial transcriptomics. We highlight the example of TBK1 where an apparent paradox exists between pathogenic coding variants which cause loss of protein function, and protective non-coding variants which cause reduced gene expression; the paradox is resolved when it is understood that the non-coding variants are acting primarily via change in gene expression within microglia, and the effect of coding variants is most prominent in neurons. We propose that cell-specific functional annotation of ALS-associated genetic variants will accelerate discovery of the genetic architecture underpinning disease in the vast majority of patients.</p>","PeriodicalId":94058,"journal":{"name":"International review of neurobiology","volume":"176 ","pages":"75-86"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International review of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.irn.2024.04.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of amyotrophic lateral sclerosis (ALS) is caused by a complex gene-environment interaction. Despite high estimates of heritability, the genetic basis of disease in the majority of ALS patients are unknown. This limits the development of targeted genetic therapies which require an understanding of patient-specific genetic drivers. There is good evidence that the majority of these missing genetic risk factors are likely to be found within the non-coding genome. However, a major challenge in the discovery of non-coding risk variants is determining which variants are functional in which specific CNS cell type. We summarise current discoveries of ALS-associated genetic drivers within the non-coding genome and we make the case that improved cell-specific annotation of genomic function is required to advance this field, particularly via single-cell epigenetic profiling and spatial transcriptomics. We highlight the example of TBK1 where an apparent paradox exists between pathogenic coding variants which cause loss of protein function, and protective non-coding variants which cause reduced gene expression; the paradox is resolved when it is understood that the non-coding variants are acting primarily via change in gene expression within microglia, and the effect of coding variants is most prominent in neurons. We propose that cell-specific functional annotation of ALS-associated genetic variants will accelerate discovery of the genetic architecture underpinning disease in the vast majority of patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非编码基因组对渐冻症的影响
大多数肌萎缩性脊髓侧索硬化症(ALS)是由复杂的基因-环境相互作用引起的。尽管遗传率估计很高,但大多数 ALS 患者的遗传基础尚不清楚。这就限制了靶向基因疗法的开发,而靶向基因疗法需要了解患者的特定基因驱动因素。有充分证据表明,这些缺失的遗传风险因素大部分可能存在于非编码基因组中。然而,发现非编码风险变异的一个主要挑战是确定哪些变异在哪种特定的中枢神经系统细胞类型中具有功能。我们总结了目前在非编码基因组中发现的 ALS 相关遗传驱动因素,并提出需要改进细胞特异性基因组功能注释以推进这一领域的发展,特别是通过单细胞表观遗传学分析和空间转录组学。我们以 TBK1 为例,指出致病编码变异会导致蛋白质功能丧失,而保护性非编码变异会导致基因表达减少,两者之间存在明显的悖论;当了解到非编码变异主要通过改变小胶质细胞内的基因表达发挥作用,而编码变异在神经元中的影响最为突出时,悖论就迎刃而解了。我们建议,对 ALS 相关基因变异的细胞特异性功能注释将加速发现绝大多数患者疾病的基因结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general clinical overview of the non-motor symptoms in Parkinson's disease: Neuropsychiatric symptoms. Executive dysfunction and cognitive decline, a non-motor symptom of Parkinson's disease captured in animal models. Insight gained from using animal models to study pain in Parkinson's disease. Investigating affective neuropsychiatric symptoms in rodent models of Parkinson's disease. Macro and micro-sleep dysfunctions as translational biomarkers for Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1