Modulation of tumor plasticity by senescent cells: Deciphering basic mechanisms and survival pathways to unravel therapeutic options.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-27 eCollection Date: 2024-01-01 DOI:10.1590/1678-4685-GMB-2023-0311
Andrew Oliveira Silva, Thais Cardoso Bitencourt, Jose Eduardo Vargas, Lucas Rosa Fraga, Eduardo Filippi-Chiela
{"title":"Modulation of tumor plasticity by senescent cells: Deciphering basic mechanisms and survival pathways to unravel therapeutic options.","authors":"Andrew Oliveira Silva, Thais Cardoso Bitencourt, Jose Eduardo Vargas, Lucas Rosa Fraga, Eduardo Filippi-Chiela","doi":"10.1590/1678-4685-GMB-2023-0311","DOIUrl":null,"url":null,"abstract":"<p><p>Senescence is a cellular state in which the cell loses its proliferative capacity, often irreversibly. Physiologically, it occurs due to a limited capacity of cell division associated with telomere shortening, the so-called replicative senescence. It can also be induced early due to DNA damage, oncogenic activation, oxidative stress, or damage to other cellular components (collectively named induced senescence). Tumor cells acquire the ability to bypass replicative senescence, thus ensuring the replicative immortality, a hallmark of cancer. Many anti-cancer therapies, however, can lead tumor cells to induced senescence. Initially, this response leads to a slowdown in tumor growth. However, the longstanding accumulation of senescent cells (SnCs) in tumors can promote neoplastic progression due to the enrichment of numerous molecules and extracellular vesicles that constitutes the senescence-associated secretory phenotype (SASP). Among other effects, SASP can potentiate or unlock the tumor plasticity and phenotypic transitions, another hallmark of cancer. This review discusses how SnCs can fuel mechanisms that underlie cancer plasticity, like cell differentiation, stemness, reprogramming, and epithelial-mesenchymal transition. We also discuss the main molecular mechanisms that make SnCs resistant to cell death, and potential strategies to target SnCs. At the end, we raise open questions and clinically relevant perspectives in the field.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132560/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Senescence is a cellular state in which the cell loses its proliferative capacity, often irreversibly. Physiologically, it occurs due to a limited capacity of cell division associated with telomere shortening, the so-called replicative senescence. It can also be induced early due to DNA damage, oncogenic activation, oxidative stress, or damage to other cellular components (collectively named induced senescence). Tumor cells acquire the ability to bypass replicative senescence, thus ensuring the replicative immortality, a hallmark of cancer. Many anti-cancer therapies, however, can lead tumor cells to induced senescence. Initially, this response leads to a slowdown in tumor growth. However, the longstanding accumulation of senescent cells (SnCs) in tumors can promote neoplastic progression due to the enrichment of numerous molecules and extracellular vesicles that constitutes the senescence-associated secretory phenotype (SASP). Among other effects, SASP can potentiate or unlock the tumor plasticity and phenotypic transitions, another hallmark of cancer. This review discusses how SnCs can fuel mechanisms that underlie cancer plasticity, like cell differentiation, stemness, reprogramming, and epithelial-mesenchymal transition. We also discuss the main molecular mechanisms that make SnCs resistant to cell death, and potential strategies to target SnCs. At the end, we raise open questions and clinically relevant perspectives in the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衰老细胞对肿瘤可塑性的调节:解密基本机制和生存途径,探索治疗方案。
衰老是细胞失去增殖能力的一种细胞状态,通常是不可逆的。在生理学上,衰老的发生是由于细胞分裂能力有限,端粒缩短,即所谓的复制衰老。DNA损伤、致癌物质激活、氧化应激或其他细胞成分损伤(统称为诱导衰老)也会提前诱导衰老。肿瘤细胞获得绕过复制衰老的能力,从而确保复制不死,这是癌症的标志。然而,许多抗癌疗法会导致肿瘤细胞进入诱导衰老。起初,这种反应会导致肿瘤生长减缓。然而,由于构成衰老相关分泌表型(SASP)的大量分子和细胞外囊泡的富集,肿瘤中长期积累的衰老细胞(SnCs)会促进肿瘤的进展。除其他作用外,SASP 还能增强或释放肿瘤的可塑性和表型转换,这是癌症的另一个特征。本综述将讨论SnCs如何促进癌症可塑性的基础机制,如细胞分化、干性、重编程和上皮-间质转化。我们还讨论了SnCs抵御细胞死亡的主要分子机制,以及针对SnCs的潜在策略。最后,我们提出了该领域的开放性问题和与临床相关的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1