Functional characterization of growth hormone releasing hormone and its receptor in amphioxus with implication for origin of hypothalamic-pituitary axis

IF 2.1 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM General and comparative endocrinology Pub Date : 2024-05-26 DOI:10.1016/j.ygcen.2024.114560
Mengmeng Yi , Xiaohan Ji , Chaoyi Chen , Zhan Gao , Shicui Zhang
{"title":"Functional characterization of growth hormone releasing hormone and its receptor in amphioxus with implication for origin of hypothalamic-pituitary axis","authors":"Mengmeng Yi ,&nbsp;Xiaohan Ji ,&nbsp;Chaoyi Chen ,&nbsp;Zhan Gao ,&nbsp;Shicui Zhang","doi":"10.1016/j.ygcen.2024.114560","DOIUrl":null,"url":null,"abstract":"<div><p>Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus <em>Branchiostoma. japonicum</em>. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes <em>Bjghrh</em> and <em>Bjghrhr</em> were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek’s pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek’s pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"355 ","pages":"Article 114560"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648024001217","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus Branchiostoma. japonicum. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes Bjghrh and Bjghrhr were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek’s pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek’s pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文昌鱼生长激素释放激素及其受体的功能特征及其对下丘脑-垂体轴起源的影响。
生长激素释放激素(GHRH)通过与不同脊椎动物的GHRH受体GHRHR结合而刺激生长激素(GH)的产生,但有关GHRH和GHRHR在原脊动物文昌鱼中的功能作用的信息仍然相当匮乏。我们的研究表明,在文昌鱼Branchiostoma.japonicum中发现了由BjGHRH前体编码的两种成熟肽--BjGHRH-1和BjGHRH-2,以及单一的BjGHRHR蛋白。与脊椎动物GHRHs和GHRHRs的分布特征一样,Bjghrh和Bjghrhr基因在文昌鱼的不同组织中广泛表达,包括脑泡、哈氏窝、神经管、鳃、肝盲肠、脊索、睾丸和卵巢。此外,BjGHRH-1和BjGHRH-2都与BjGHRHR相互作用,并以剂量依赖的方式触发cAMP/PKA信号通路。重要的是,BjGHRH-1和BjGHRH-2都能激活哈氏窝细胞中GH样基因的表达。这表明文昌鱼中已经出现了类似脊椎动物的功能性GHRH-GHRHR轴,这是脊椎动物早期进化过程中包括繁殖、生长、新陈代谢、应激和渗透调节在内的生理分化的开创性创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
General and comparative endocrinology
General and comparative endocrinology 医学-内分泌学与代谢
CiteScore
5.60
自引率
7.40%
发文量
120
审稿时长
2 months
期刊介绍: General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.
期刊最新文献
Pharmacological function of melanocortin-3 receptor in goldfish (Carassius auratus). Enhanced expression of Cyp17a1 and production of DHEA-S in the liver of late-pregnant rats. Stress Axis: Molecular and Cellular Regulation of the HPI/HPA Axis. Zebra finches (Taeniopygia castanotis) display varying degrees of stress resilience in response to constant light. Gonadotropin-releasing hormone II and its receptor regulate motility, morphology, and kinematics of porcine spermatozoa in vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1