Liver respiratory-induced motion estimation using abdominal surface displacement as a surrogate: robotic phantom and clinical validation with varied correspondence models.
{"title":"Liver respiratory-induced motion estimation using abdominal surface displacement as a surrogate: robotic phantom and clinical validation with varied correspondence models.","authors":"Ana Cordón Avila, Momen Abayazid","doi":"10.1007/s11548-024-03176-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This work presents the implementation of an RGB-D camera as a surrogate signal for liver respiratory-induced motion estimation. This study aims to validate the feasibility of RGB-D cameras as a surrogate in a human subject experiment and to compare the performance of different correspondence models.</p><p><strong>Methods: </strong>The proposed approach uses an RGB-D camera to compute an abdominal surface reconstruction and estimate the liver respiratory-induced motion. Two sets of validation experiments were conducted, first, using a robotic liver phantom and, secondly, performing a clinical study with human subjects. In the clinical study, three correspondence models were created changing the conditions of the learning-based model.</p><p><strong>Results: </strong>The motion model for the robotic liver phantom displayed an error below 3 mm with a coefficient of determination above 90% for the different directions of motion. The clinical study presented errors of 4.5, 2.5, and 2.9 mm for the three different motion models with a coefficient of determination above 80% for all three cases.</p><p><strong>Conclusion: </strong>RGB-D cameras are a promising method to accurately estimate the liver respiratory-induced motion. The internal motion can be estimated in a non-contact, noninvasive and flexible approach. Additionally, three training conditions for the correspondence model are studied to potentially mitigate intra- and inter-fraction motion.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03176-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This work presents the implementation of an RGB-D camera as a surrogate signal for liver respiratory-induced motion estimation. This study aims to validate the feasibility of RGB-D cameras as a surrogate in a human subject experiment and to compare the performance of different correspondence models.
Methods: The proposed approach uses an RGB-D camera to compute an abdominal surface reconstruction and estimate the liver respiratory-induced motion. Two sets of validation experiments were conducted, first, using a robotic liver phantom and, secondly, performing a clinical study with human subjects. In the clinical study, three correspondence models were created changing the conditions of the learning-based model.
Results: The motion model for the robotic liver phantom displayed an error below 3 mm with a coefficient of determination above 90% for the different directions of motion. The clinical study presented errors of 4.5, 2.5, and 2.9 mm for the three different motion models with a coefficient of determination above 80% for all three cases.
Conclusion: RGB-D cameras are a promising method to accurately estimate the liver respiratory-induced motion. The internal motion can be estimated in a non-contact, noninvasive and flexible approach. Additionally, three training conditions for the correspondence model are studied to potentially mitigate intra- and inter-fraction motion.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.