Metabolism gene expression in worker honey bees after exposure to 50Hz electric field - semi-field analysis.

IF 2.6 2区 生物学 Q1 ZOOLOGY Frontiers in Zoology Pub Date : 2024-05-29 DOI:10.1186/s12983-024-00535-1
Agnieszka Murawska, Paweł Migdał, Moritz Mating, Paweł Bieńkowski, Ewelina Berbeć, Ralf Einspanier
{"title":"Metabolism gene expression in worker honey bees after exposure to 50Hz electric field - semi-field analysis.","authors":"Agnieszka Murawska, Paweł Migdał, Moritz Mating, Paweł Bieńkowski, Ewelina Berbeć, Ralf Einspanier","doi":"10.1186/s12983-024-00535-1","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation of the effects of artificial 50 Hz electric field (E-field) frequency on Apis mellifera is a relatively new field of research. Since the current literature focuses mainly on short-term effects, it is unknown whether E-fields have permanent effects on bees or whether their effects can be neutralized. In this study we assessed gene expression immediately after exposure to the E-field, as well as 7 days after exposure. The aim of this work was to identify potentially dysregulated gene transcripts in honey bees that correlate with exposure time and duration to E-fields.Newly emerged bees were marked daily with a permanent marker (one color for each group). Then bees were exposed to the 50 Hz E-field with an intensity of 5.0 kV/m or 10.0 kV/m for 1-3 h. After exposure, half of the bees were analyzed for gene expression changes. The other half were transferred to a colony kept in a mini-hive. After 7 days, marked bees were collected from the mini-hive for further analysis. Six regulated transcripts were selected of transcripts involved in oxidative phosphorylation (COX5a) and transcripts involved in endocrine functions (HBG-3, ILP-1), mitochondrial inner membrane transport (TIM10), and aging (mRPL18, mRPS30).Our study showed that in Apis mellifera the expression of selected genes is altered in different ways after exposure to 50 Hz electric fields -. Most of those expression changes in Cox5a, mRPL18, mRPS30, and HGB3, were measurable 7 days after a 1-3 h exposure. These results indicate that some E-field effects may be long-term effects on honey bees due to E-field exposure, and they can be observed 7 days after exposure.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-024-00535-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation of the effects of artificial 50 Hz electric field (E-field) frequency on Apis mellifera is a relatively new field of research. Since the current literature focuses mainly on short-term effects, it is unknown whether E-fields have permanent effects on bees or whether their effects can be neutralized. In this study we assessed gene expression immediately after exposure to the E-field, as well as 7 days after exposure. The aim of this work was to identify potentially dysregulated gene transcripts in honey bees that correlate with exposure time and duration to E-fields.Newly emerged bees were marked daily with a permanent marker (one color for each group). Then bees were exposed to the 50 Hz E-field with an intensity of 5.0 kV/m or 10.0 kV/m for 1-3 h. After exposure, half of the bees were analyzed for gene expression changes. The other half were transferred to a colony kept in a mini-hive. After 7 days, marked bees were collected from the mini-hive for further analysis. Six regulated transcripts were selected of transcripts involved in oxidative phosphorylation (COX5a) and transcripts involved in endocrine functions (HBG-3, ILP-1), mitochondrial inner membrane transport (TIM10), and aging (mRPL18, mRPS30).Our study showed that in Apis mellifera the expression of selected genes is altered in different ways after exposure to 50 Hz electric fields -. Most of those expression changes in Cox5a, mRPL18, mRPS30, and HGB3, were measurable 7 days after a 1-3 h exposure. These results indicate that some E-field effects may be long-term effects on honey bees due to E-field exposure, and they can be observed 7 days after exposure.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工蜂暴露于 50Hz 电场后的代谢基因表达 - 半场分析。
人工 50 赫兹电场频率对蜜蜂影响的研究是一个相对较新的研究领域。由于目前的文献主要集中在短期影响上,电场是否会对蜜蜂产生永久性影响或其影响是否可以被中和还不得而知。在这项研究中,我们评估了暴露于电场后立即以及暴露 7 天后的基因表达。这项工作的目的是确定蜜蜂体内与暴露于电场的时间和持续时间相关的潜在失调基因转录本。然后将蜜蜂暴露在强度为 5.0 kV/m 或 10.0 kV/m 的 50 赫兹电场中 1-3 小时。另一半蜜蜂被转移到迷你蜂箱中的蜂群中。7 天后,从迷你蜂巢中收集有标记的蜜蜂进行进一步分析。我们的研究表明,蜜蜂暴露于 50 赫兹电场后,所选基因的表达发生了不同程度的变化。Cox5a、mRPL18、mRPS30 和 HGB3 的大部分表达变化在暴露 1-3 h 后 7 天仍可测量。这些结果表明,某些电场效应可能是由于暴露于电场而对蜜蜂产生的长期影响,而且在暴露后 7 天即可观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life. As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem. Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost. The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.
期刊最新文献
Complex interplay between the microfluidic and optical properties of Hoplia sp. beetles Massive citizen science sampling and integrated taxonomic approach unravel Danish cryptogam-dwelling tardigrade fauna Male reproductive system of the deep-sea acorn worm Quatuoralisia malakhovi (Hemichordata, Enteropneusta, Torquaratoridae) from the Bering Sea Are toe fringes important for lizard burying in highly mobile sand? Human activities reshape the spatial overlap between North Chinese leopard and its wild ungulate prey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1