{"title":"A comprehensive review on graphene-based materials: From synthesis to contemporary sensor applications","authors":"Ramaswamy Sandeep Perala , Narendhar Chandrasekar , Ramachandran Balaji , Pinky Steffi Alexander , Nik Zulkarnine Nik Humaidi , Michael Taeyoung Hwang","doi":"10.1016/j.mser.2024.100805","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon based 2D materials, specifically those of the graphene family, recently gained considerable interest in the study of sensors. It is emerging as a novel and potent material with tunable physicochemical properties such as ballistic conduction, high mechanical strength, a broad spectrum of chemical stability, high surface-area-to-volume ratio, ease of surface functionalization, and the possibility of mass production. This review provides insights into recent advances in graphene-based materials for field-effect transistor-based sensors, electrochemical sensors, and Raman spectroscopy-based sensors. Among the sensing methodologies, those utilizing field-effect transistors demonstrate a high degree of specificity and ultralow sensitivity and are relatively easy to manufacture in large batches with a repeatable sensitivity. Over the last decade, multiple types of sensors based on various graphene-family materials have been researched to detect various types of targets, ranging from biomolecules to heavy metals and chemical pollutants. Owing to their ability to integrate into a portable and rapid test platform, both at the laboratory scale and for point-of-care testing, the graphene family of materials (GFM) is a significantly viable base for sensor fabrication. Electrochemical and Raman spectroscopy-based sensors can provide a robust platform for detection at high-stress environments including fluctuating pH, temperature, and other possible disturbing conditions. The strategies used by researchers to detect specific and ultralow concentrations of analytes in a diverse mixture of targets are elaborated in detail. This review chronologically presents details regarding the GFM ranging from their synthesis to specific application possibilities.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"159 ","pages":"Article 100805"},"PeriodicalIF":31.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000354","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon based 2D materials, specifically those of the graphene family, recently gained considerable interest in the study of sensors. It is emerging as a novel and potent material with tunable physicochemical properties such as ballistic conduction, high mechanical strength, a broad spectrum of chemical stability, high surface-area-to-volume ratio, ease of surface functionalization, and the possibility of mass production. This review provides insights into recent advances in graphene-based materials for field-effect transistor-based sensors, electrochemical sensors, and Raman spectroscopy-based sensors. Among the sensing methodologies, those utilizing field-effect transistors demonstrate a high degree of specificity and ultralow sensitivity and are relatively easy to manufacture in large batches with a repeatable sensitivity. Over the last decade, multiple types of sensors based on various graphene-family materials have been researched to detect various types of targets, ranging from biomolecules to heavy metals and chemical pollutants. Owing to their ability to integrate into a portable and rapid test platform, both at the laboratory scale and for point-of-care testing, the graphene family of materials (GFM) is a significantly viable base for sensor fabrication. Electrochemical and Raman spectroscopy-based sensors can provide a robust platform for detection at high-stress environments including fluctuating pH, temperature, and other possible disturbing conditions. The strategies used by researchers to detect specific and ultralow concentrations of analytes in a diverse mixture of targets are elaborated in detail. This review chronologically presents details regarding the GFM ranging from their synthesis to specific application possibilities.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.